. | . |
Harnessing the power of AI to understand warm dense matter by Staff Writers Dresden, Germany (SPX) Jan 29, 2021
The study of warm dense matter helps us understand what is going on inside giant planets, brown dwarfs, and neutron stars. However, this state of matter, which exhibits properties of both solids and plasmas, does not occur naturally on Earth. It can be produced artificially in the lab using large X-ray experiments, albeit only at a small scale and for short periods of time. Theoretical and numerical models are essential to evaluate these experiments, which are impossible to interpret without formulas, algorithms, and simulations. Scientists at the Center for Advanced Systems Understanding (CASUS) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have now developed a method to evaluate such experiments more effectively and faster than before. Describing the exotic state of warm dense matter poses an extraordinary challenge to researchers. For one, common models of plasma physics cannot handle the high densities that are prevalent in this state. And for another, even models for condensed matter are no longer effective under the immense energies it entails. A team around Dr. Tobias Dornheim, Dr. Attila Cangi, Kushal Ramakrishna, and Maximilian Bohme from CASUS in Gorlitz are working on modeling such complex systems. Initial results were recently published in the journal Physical Review Letters. The team joined forces with Dr. Jan Vorberger from the Institute of Radiation Physics at HZDR and Prof. Shigenori Tanaka from Kobe University in Japan to develop a new method to calculate the properties of warm dense matter more efficiently and faster. "With our algorithm, we can perform highly accurate calculations of the local field correction, which describes the interaction of electrons in warm dense matter and thus allows us to unlock its properties. We can use this calculation to model and interpret results in future X-ray scattering experiments, but also as a basis for other simulation methods. Our method helps determine the properties of warm dense matter, such as temperature and density, but also its conductivity for electric current or heat and many other characteristics," Dornheim explains.
Mainframe computers and neural networks To implement it, they conducted computationally intense simulations over millions of processor hours on mainframe computers. Based on this data and with the help of analytical statistical methods, the scientists trained a neural network to numerically predict the interaction of electrons. The efficiency gains provided by the new tool depend on the particular application. "In general, though, we can say that previous methods required thousands of processor hours to attain a high degree of accuracy, whereas our method takes mere seconds," says Attila Cangi, who joined CASUS from Sandia National Laboratories in the United States. "So now we can perform the simulation on a laptop whereas we used to need a supercomputer."
Outlook: A new standard code for experiment evaluation "We want to incorporate our findings into a new code, which will be open source, unlike the current code, which is licensed and therefore difficult to adapt to new theoretical insights," explains Maximilian Bohme, a doctoral student with CASUS who is collaborating on this with British plasma physicist Dave Chapman. Such X-ray experiments to study warm dense matter are only possible at a handful of large laboratories, including the European XFEL near Hamburg, Germany, but also the Linear Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) at Stanford University, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z Machine at Sandia National Laboratories, and the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan. "We are in contact with these labs and expect to be able to be actively involved in the modeling of the experiments," Tobias Dornheim reveals. The first experiments at the Helmholtz International Beamline for Extreme Fields (HIBEF) at the European XFEL are already being prepared.
Research Report: Effective static approximation: A fast and reliable tool for warm-dense matter theory
New galaxy sheds light on how stars form Bath UK (SPX) Jan 26, 2021 A lot is known about galaxies. We know, for instance, that the stars within them are shaped from a blend of old star dust and molecules suspended in gas. What remains a mystery, however, is the process that leads to these simple elements being pulled together to form a new star. But now an international team of scientists, including astrophysicists from the University of Bath in the UK and the National Astronomical Observatory (OAN) in Madrid, Spain have taken a significant step towards understand ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |