. 24/7 Space News .
STELLAR CHEMISTRY
Harnessing light to enable next-generation microwave systems
by Staff Writers
Washington DC (SPX) Mar 24, 2021

GRYPHON will explore innovative microwave sources using state-of-the-art microfabricated photonic components to achieve the target program metrics while creating a path to manufacturability. To accomplish the target objectives, the program will focus on two specific research areas.

Electronic oscillators lie at the heart of virtually all microelectronic systems, generating the clock signals used in digital electronics and the precise frequencies that enable radio frequency (RF) sensors and communications. While an ideal oscillator provides a perfect signal at a single frequency, imperfections degrade the spectral purity of real-world components.

Such impairments, broadly quantified as phase noise, ultimately limit the performance of many military radars and commercial 5G systems. The issue is becoming increasingly burdensome as the airways become more congested and defense needs evolve.

Today's best microwave oscillators can achieve extraordinarily low phase noise, but the highest-performing technologies make large sacrifices in pursuit of performance. Trade-offs lead to oscillator modules with undesirable size, weight, power, and cost (SWaP-C), limited tunability, and high sensitivity to their surroundings, all of which limit their use in advanced defense systems.

The Generating RF with Photonic Oscillators for Low Noise (GRYPHON) program seeks to eliminate the shortcomings of today's microwave oscillators by developing ultra-low-noise versions that are simultaneously compact, widely tunable, robust, and volume-manufacturable. To achieve its objectives, GRYPHON will employ emerging innovations in optical frequency division, integrated photonics, and non-linear optics.

Recent benchtop demonstrations using laser-based techniques have set world records in microwave phase noise. In parallel, ongoing innovation in the fields of integrated photonics and non-linear optics has enabled dramatic reductions in the size, weight, and power (SWaP) of key components needed to implement photonic oscillators. This includes chip-scale laser resonators with high quality factors and optical frequency combs.

"By implementing advances in photonic microwave generation with integrated photonics, we see a pathway to create a significant leap in microwave oscillator capability, while simultaneously realizing characteristics not found in today's products: very low phase noise, compact form factor, ultra-wideband tuning, and environmental robustness," says Gordon Keeler, DARPA MTO program manager. "Through GRYPHON, we hope to realize a major increase in capability for next-generation radar and communications systems."

GRYPHON will explore innovative microwave sources using state-of-the-art microfabricated photonic components to achieve the target program metrics while creating a path to manufacturability. To accomplish the target objectives, the program will focus on two specific research areas.

The first aims to develop a prototype that can be readily tested within an application and brought to maturation quickly. During the first phase of the program, research teams will prioritize achieving low phase noise and compact form factor, while tuning and robustness will be emphasized in later phases.

The second research area will prioritize understanding the fundamental limits of photonic microwave generation. Research teams will be asked to offer at least an order of magnitude leap in one of three target metrics: size, phase noise, or frequency span.

Interested proposers will have an opportunity to learn more about the Generating RF with Photonic Oscillators for Low Noise (GRYPHON) program during a virtual Proposers Day, which will be held on April 8, 2021, from 11:00 a.m. to 4:00 p.m. EDT. Advanced registration is required to attend. To learn more, please visit here


Related Links
Defense Advanced Research Projects Agency
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
National laboratories' look to the future of light sources with new magnet prototype
Batavia IL (SPX) Jan 29, 2021
With a powerful enough light, you can see things that people once thought would be impossible. Large-scale light source facilities generate that powerful light, and scientists use it to create more durable materials, build more efficient batteries and computers, and learn more about the natural world. When it comes to building these massive facilities, space is money. If you can get higher-energy beams of light out of smaller devices, you can save millions on construction costs. Add to that the ch ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Keeping up with Thomas

With SpaceX, ISS enters 'Golden Age' But what comes next

Air leak in Russia's ISS Zvezda module still unresolved

NASA awards Rapid IV On-Ramp 1 Contract for Spacecraft Systems, Services

STELLAR CHEMISTRY
Peraton awarded US Army hypersonic testing and evaluation contract

Launch Vehicle and Missile Ascent Trajectories

Soyuz rocket gets new paint job for first time in over 50 years

SpaceX launches 22nd cluster of Starlink satellites

STELLAR CHEMISTRY
Is there life on mars today and where

New study challenges long-held theory of fate of Martian Water

Three bacterial strains discovered on space station may help grow plants on Mars

Perseverance SuperCam science instrument delivers first results

STELLAR CHEMISTRY
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

STELLAR CHEMISTRY
Umbra hits regulatory "jackpot" for its satellite constellation able to see a soda can from space

NASA to Host Virtual Symposium Exploring Rise of Commercial Space

City under pressure to invest into UK space industry

Pioneering UK space technology gets government cash boost

STELLAR CHEMISTRY
Spacepath Communications to provide solid-state amplifiers for US Market

NAV CANADA awards Raytheon UK contract for secondary surveillance radars to manage Canadian airspace

Research for environment-friendly production plants

Scientists turn plastic into moisture-wicking textile

STELLAR CHEMISTRY
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

There might be many planets with water-rich atmospheres

How the habitability of exoplanets is influenced by their rocks

STELLAR CHEMISTRY
Juno reveals dark origins of one of Jupiter's grand light shows

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.