Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
HZDR researchers simulate electrons in astrophysical plasma jets
by Staff Writers
Dresden, Germany (SPX) Nov 25, 2013


File image.

Physicists of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have been able to simulate the motion of billions of electrons within astrophysical plasma jets and calculate the light they emit with the help of a high-performance computer. They have been nominated for the Gordon Bell Prize as a result of their work. On the 20th of November they present their work at the Supercomputing Conference SC13 in Denver.

"When the wind blows over the ocean, waves form," Michael Bussmann, head of a HZDR junior research group, starts to explain.

"At high wind speeds, water and wind swirl about one another, which is how spray and froth arise. Spray is thus a turbulent mixture of water and air. A similar thing occurs in space when a star ejects hot gas. The jet created by the hot plasma mixes with other gas that surrounds the star. Turbulent flows arise at the boundary region between the two gases." The staff members of the "Computational Radiation Physics" group recently studied the formation of these turbulent phenomena, known as Kelvin-Helmholtz instabilities, with the help of simulations.

"We hope to understand Kelvin-Helmholtz instabilities in detail. To do so, we have tried something that almost no one else has up to now," explains Bussmann. "We have simulated a plasma jet at such high resolution that we could follow the electrons in the jet. That by itself requires enormous computing power, as we had to simulate almost a hundred billion particles."

It is impossible even with the most modern telescopes to see individual particles in a stellar jet, however. Scientists were therefore faced with the problem of how to compare their theoretical results to observations. They solved it by making use of the fact that electrons emit light over a broad spectrum of wavelengths when they change their direction of motion or speed. They adapted their simulation program PIConGPU to allow light emitted in all directions to be calculated from the motion of the electrons.

"With luck, we are able to see the light emitted with telescopes from Earth," explains the physicist. "We can therefore simulate something that can be measured on earth. However, the computer power necessary for this is enormous."

The light emitted had to be calculated individually for the billions of electrons in the simulation - and in hundreds of different directions. For this reason, the HZDR team used what was then the most powerful supercomputer in the world for their calculations in June of this year: TITAN at Oak Ridge National Laboratory. PIConGPU spent over 16 hours calculating the solution to this problem using 18,000 graphics cards.

Few simulation programs can make use of such powerful compute capability. Simulations that operate the most efficiently are honored each year with the Gordon Bell Prize for outstanding achievement in the field of high-performance computing, for which the HZDR scientists have now been nominated.

"We will find out whether we have won at the Supercomputing Conference 2013 in Denver mid-November. It is already a real honor to be among the six finalists. I am very proud of what everyone has achieved. That was great teamwork!" emphasizes Bussmann.

"We have obtained unique scientific data with the simulations run on TITAN. It is such a huge quantity that we are still busy evaluating it. Everyone on the team is very excited about what we will discover." Plasmas play a central role in research carried on by the Junior Research Group.

The HZDR researchers hope to understand the properties of laser-driven radiation sources more precisely with the help of analytical models and simulations. Compact accelerators for treating cancer with energetic particles could be developed with these radiation sources.

The scientists want to use high-intensity laser pulses to achieve this goal. They thus have to precisely understand the interaction of the laser light with matter in order to optimize these advanced radiation sources for applications. For this they simulate this interaction on the atomistic level, the level of individual electrons and atoms.

.


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Revisiting quantum effects in MEMS
Heidelberg, Germany (SPX) Nov 25, 2013
Micro- and nano-electromechanical devices, referred to as MEMS and NEMS, are ubiquitous. These nanoscale machines with movable parts are used, for example, to trigger cars' airbags following a shock. They can also be found in smartphones, allowing them to detect how to adequately display the screen for the viewer. The trouble is that, as their size decreases, forces typically experienced a ... read more


TIME AND SPACE
NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

Rediscovered Apollo data gives first measure of how fast Moon dust piles up

NASA's GRAIL Mission Puts a New Face on the Moon

TIME AND SPACE
Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

Rover Team Working to Diagnose Electrical Issue

TIME AND SPACE
NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

Success of 'New Space' era hinges on public's interest

NASA Issues 2014 Call for Advanced Technology Concepts

TIME AND SPACE
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

TIME AND SPACE
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

TIME AND SPACE
Spaceflight Deploys Planet Labs' Dove 3 Spacecraft from the Dnepr

Arianespace orders ten new Vega launchers from ELV

NASA Commercial Crew Partner SpaceX Achieves Milestone in Safety Review

ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

TIME AND SPACE
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

TIME AND SPACE
Overcoming Brittleness: New Insights into Bulk Metallic Glass

SlipChip Counts Molecules with Chemistry and a Cell Phone

NASA Instrument Determines Hazards of Deep-Space Radiation

$3.3 billion Canadian mining project scrapped




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement