Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
HI-C sounding rocket mission has finest mirrors ever made
by Staff Writers
Greenbelt MD (SPX) Jul 13, 2012


Waiting for launch: NASA's HI-C mission, sitting in the front of this image, will launch on July 11, 2012, to observe the sun's corona in the highest detail ever captured during a 381-second flight. Credit: NASA.

On July 11, NASA scientists will launch into space the highest resolution solar telescope ever to observe the solar corona, the million degree outer solar atmosphere. The instrument, called HI-C for High Resolution Coronal Imager, will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico.

The mission will have just 620 seconds for its flight, spending about half of that time high enough that Earth's atmosphere will not block ultraviolet rays from the sun. By looking at a specific range of UV light, HI-C scientists hope to observe fundamental structures on the sun, as narrow as 100 miles across.

"Other instruments in space can't resolve things that small, but they do suggest - after detailed computer analysis of the amount of light in any given pixel - that structures in the sun's atmosphere are about 100 miles across," says Jonathan Cirtain, a solar scientist at NASA's Marshall Space Flight Center in Huntsville, Ala. who is the project scientist for HI-C.

"And we also have theories about the shapes of structures in the atmosphere, or corona, that expect that size. HI-C will be the first chance we have to see them."

The spatial resolution on HI-C is some five times more detailed than the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO), that can resolve structures down to 600 miles and currently sends back some of our most stunning and scientifically useful images of the sun.

Of course, AIA can see the entire sun at this resolution, while HI-C will focus on an area just one-sixth the width of the sun or 135,000 miles across. Also, AIA observes the sun in ten different wavelengths, while HI-C will observe just one: 193 Angstroms. This wavelength of UV light corresponds to material in the sun at temperatures of 1.5 million Kelvin and that wavelength is typically used to observe material in the corona.

During its ten-minute journey, HI-C will focus on the center of the sun, where a large sunspot is predicted to be - a prediction based on what the sun looked like 27 days previously, since it takes 27 days for the sun to complete a full rotation.

"We will start acquiring data at 69 seconds after launch, at a rate of roughly an image a second," says Cirtain. "We will be able to look through a secondary H-alpha telescope on the instrument in real time and re-point the main telescope as needed."

In addition to seeing the finest structures yet seen in the sun's corona, the launch of HI-C will serve as a test bed for this high-resolution telescope. Often one improves telescope resolution simply by building bigger mirrors, but this is not possible when constraining a telescope to the size of a sounding rocket, or even a long-term satellite.

So HI-C's mirror is only about nine and a half inches across, no bigger than that of AIA. However, the HI-C mirrors, made by a team at Marshall, are some of the finest ever made, says Cirtain. If one could see the surface at an atomic level, it would show no greater valleys or peaks than two atoms in either direction.

"So it's super smooth," says Cirtain.

In addition, the team created a longer focal length - that is, they increased the distance the light travels from its primary mirror to its secondary mirror, another trick to improve resolution - by creating a precise inner maze for the light to travel from mirror to mirror, rather than a simple, shorter straight line.

.


Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Researchers create 'MRI' of the sun's interior motions
New York NY (SPX) Jul 13, 2012
A team of scientists has created an "MRI" of the Sun's interior plasma motions, shedding light on how it transfers heat from its deep interior to its surface. The result, which appears in the journal the Proceedings of the National Academy of Sciences, upends our understanding of how heat is transported outwards by the Sun and challenges existing explanations of the formation of sunspots and mag ... read more


SOLAR SCIENCE
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

SOLAR SCIENCE
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

SOLAR SCIENCE
Nose Landing Gear Tested for Dream Chaser Spacecraft

Virgin Galactic Reveals Privately Funded Satellite Launcher and Confirms SpaceShipTwo Poised for Powered Flight

Branson to take kids on first space tourist trip

Space for dessert?

SOLAR SCIENCE
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

SOLAR SCIENCE
Science, Maintenance for Station Crew; Launch Preps for New Crew Members

ESA astronaut Andre Kuipers returns to Earth

First Annual ISS Research and Development Conference in Review

Three astronauts land on Earth from ISS in Russian capsule

SOLAR SCIENCE
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

SOLAR SCIENCE
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

SOLAR SCIENCE
The eyes have it for disabled gamers

Raytheon to pursue USAF deployable air traffic radar program

Raytheon's MTS-B delivers leading-edge surveillance technology to USAF

The Day Information Went Global




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement