24/7 Space News
EXO WORLDS
HD 169142 b, the third protoplanet confirmed to date
Image of the HD 169142 system showing the signal of the forming planet HD 169142 b (around 11 o'clock), as well as a bright spiral arm resulting from the dynamic interaction between the planet and the disc in which it is located. The signal from the star, 100,000 times brighter than the planet, was subtracted by a combination of optical components and image processing (mask in the centre of the image). Observations at different times show the planet advancing in its orbit over time. Image obtained with ESO's VLT/SPHERE instrument.
HD 169142 b, the third protoplanet confirmed to date
by Staff Writers
Liege, Belgium (SPX) Apr 18, 2023

An international team of researchers from the University of Liege (Belgium) and Monash University (Australia) has just published the results of the analysis of data from the SPHERE instrument of the European Southern Observatory (ESO), which confirms a new protoplanet. This result was made possible thanks to advanced image processing tools developed by the PSILab of the University of Liege.

Planets form from clumps of material in discs surrounding newborn stars. When the planet is still forming, i.e. when it is still gathering material, it is called a protoplanet. To date, only two protoplanets had been unambiguously identified as such, PDS 70 b and c, both orbiting the star PDS 70. This number has now been increased to three with the discovery and confirmation of a protoplanet in the disk of gas and dust surrounding HD 169142, a star 374 light years from our solar system.

"We used observations from the SPHERE instrument of the European Southern Observatory's (ESO) Very Large Telescope (VLT) obtained on the star HD 169142, which was observed several times between 2015 and 2019," explains Iain Hammond, a researcher at Monash University (Australia) who stayed at ULiege as part of his doctoral thesis. As we expect planets to be hot when they form, the telescope took infrared images of HD 169142 to look for the thermal signature of their formation.

With these data, we were able to confirm the presence of a planet, HD 169142 b, about 37 AU (37 astronomical units, or 37 times the distance from the Earth to the Sun) from its star - slightly further than the orbit of Neptune. Back in 2019, a team of researchers led by R. Gratton had previously hypothesised that a compact source seen in their images could trace a protoplanet. Our new study confirms this hypothesis through both a re-analysis of the data used in their study as well as the inclusion of new observations of better quality.

The different images, obtained with VLT's SPHERE instrument between 2015 and 2019, reveal a compact source that is moving over time as expected for a planet orbiting at 37 astronomical units from its star. All data sets obtained with the SPHERE instrument were analysed with state-of-the-art image processing tools developed by the PSILab team at the University of Liege. The last data set considered in our study, obtained in 2019, is crucial for the confirmation of the planet's motion," explains Valentin Christiaens, researcher at the PSILab of the University of Liege. This data set had not been published until now.

The new images also confirm that the planet must have carved an annular gap in the disc - as predicted by the models. This gap is clearly visible in polarised light observations of the disc. "In the infrared, we can also see a spiral arm in the disc, caused by the planet and visible in its wake, suggesting that other protoplanetary discs containing spirals may also harbour yet undiscovered planets," says Hammond.

The polarised light images, as well as the infrared spectrum measured by the research team, further indicate that the planet is buried in a significant amount of dust that it has accreted from the protoplanetary disc. This dust could be in the form of a circumplanetary disc, a small disc that forms around the planet itself, which in turn could form moons. This important discovery demonstrates that the detection of planets by direct imaging is possible even at a very early stage of their formation.

There have been many false positives among the detections of planets in formation over the last ten years," says Valentin Christiaens. "Apart from the protoplanets of the PDS 70 system, the status of the other candidates is still hotly debated in the scientific community. The protoplanet HD 169142 b seems to have different properties to the protoplanets of the PDS 70 system, which is very interesting. It seems that we have captured it at a younger stage of its formation and evolution, as it is still completely buried in or surrounded by a lot of dust."

Given the very small number of confirmed forming planets to date, the discovery of this source and its follow-up should give us a better understanding of how planets, and in particular giant planets such as Jupiter, are formed.

Further characterisation of the protoplanet and independent confirmation could be obtained through future observations with the James Webb Space Telescope (JWST). The high sensitivity of JWST to infrared light should indeed allow researchers to detect thermal emission from the hot dust around the planet.

Research Report:Confirmation and Keplerian motion of the gap-carving protoplanet HD 169142 b

Related Links
University of Liege
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Do Earth-like exoplanets have magnetic fields
Washington DC (SPX) Apr 04, 2023
Earth's magnetic field does more than keep everyone's compass needles pointed in the same direction. It also helps preserve Earth's sliver of life-sustaining atmosphere by deflecting high energy particles and plasma regularly blasted out of the sun. Researchers have now identified a prospective Earth-sized planet in another solar system as a prime candidate for also having a magnetic field - YZ Ceti b, a rocky planet orbiting a star about 12 light-years away from Earth. Researchers Sebastian Pined ... read more

EXO WORLDS
Russian cosmonauts take spacewalk outside of ISS

Space seeds take root in Inner Mongolia

Calnetix Technologies' high-speed blower system installed on ISS

Rocket Lab launches new constellation-class star tracker

EXO WORLDS
Rocket Lab introduces suborbital testbed rocket, selected for hypersonic test flights

Elon Musk forms X.AI artificial intelligence company

SpaceX reschedules Starship test flight for Thursday

Southern Launch to partner with Koonibba aboriginal community to develop spaceport

EXO WORLDS
Clouds Above, Contact Science Below: Sols 3800-3802

Hey Percy, look at those boulders

Curiosity gets a major software upgrade

Ingenuity Mars Helicopter completes 50th flight

EXO WORLDS
China, France join hands in space

Shenzhou XV mission crew members set China record

Spacewalks become 'routine' after 12th mission

Rocket that will carry Tianzhou ship to space arrives at launch center

EXO WORLDS
Viasat confirms ViaSat-3 Americas set to launch

Virgin Orbit bankruptcy: why the UK's spaceport industry may still have a bright future

Nova Space to offer Space Professional Development Program for AWS Employees

HawkEye 360's latest Cluster 7 satellites successfully launched

EXO WORLDS
NASA satellite's elusive green lasers spotted at work

General Atomics completes commissioning of space environmental testing chambers

SwRI joins new NASA institute to qualify, certify additive manufacturing methods

Viasat real-time Earth antennas integrated on Microsoft Azure Orbital

EXO WORLDS
International team discover new exoplanet partly using direct imaging

Webb peeks into the birthplaces of exoplanets

HD 169142 b, the third protoplanet confirmed to date

Do Earth-like exoplanets have magnetic fields

EXO WORLDS
Icy Moonquakes: Surface Shaking Could Trigger Landslides

Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

Spotlight on Ganymede, Juice's primary target

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.