. 24/7 Space News .
WATER WORLD
Gulf Stream eddies as a source of iron
by Staff Writers
Zurich, Switzerland (SPX) Jul 04, 2018

At one location close to the Gulf Stream, the ETH researchers noticed elevated iron concentrations inear the surface of the otherwise iron-poor North Atlantic Gyre, reaching values similar to those of coastal water. They realised that the research vessel had, entirely by chance, sampled a Gulf Stream eddy transporting iron into the nutrient-poor waters of the North Atlantic.

Minuscule sea creatures like cyanobacteria need large amounts of trace elements such as zinc and iron. In the world's oceans, however, the latter is often in short supply. This is true of large stretches of the North Atlantic, especially the large North Atlantic Gyre between North America, the Canary Islands, the Caribbean and the Gulf Stream.

Up until now, researchers have usually assumed that dust from the Sahara was the only significant source of iron to the North Atlantic Gyre. Now ETH geochemists Tim Conway and Gregory de Souza have discovered another source: cold, iron-rich seawater from the North American continental slope, which is captured by meanders of the Gulf Stream and carried out to the North Atlantic Gyre. Their study was recently published in the journal Nature Geoscience.

Eddies on the surface
These "water pockets" are visible at the ocean's surface as circular eddies, the largest of which have a diameter of 200 kilometres. Beneath them are cylinder-shaped columns that reach down to 1,000 metres, rotating anticlockwise on their own axes. They last for about two years, during which time their rotation slows as they mix with the water of the North Atlantic Gyre and enrich it with iron. Some of the water columns return to be reabsorbed by the Gulf Stream.

"The amount of iron from this source is probably of the same order of magnitude as that delivered by Saharan dust, since Gulf Stream eddies are constantly forming, while dust storms are usually just brief events," says de Souza, Senior Assistant at the Institute of Geochemistry and Petrology at ETH Zurich.

Pure curiosity: "Stumbling" across iron-rich water
de Souza and former postdoc Conway (now Professor at the University of South Florida) found the iron-carrying Gulf Stream eddies serendipitously. Purely out of curiosity, the two researchers examined some recently published data that had been gathered during a research cruise from the North American coast to Bermuda. This data included the concentrations of iron and zinc dissolved in seawater from the surface to the ocean floor.

At one location close to the Gulf Stream, the ETH researchers noticed elevated iron concentrations inear the surface of the otherwise iron-poor North Atlantic Gyre, reaching values similar to those of coastal water. They realised that the research vessel had, entirely by chance, sampled a Gulf Stream eddy transporting iron into the nutrient-poor waters of the North Atlantic.

Quantitative estimates difficult
To more precisely assess and calculate how much iron is delivered in this way, the ETH researchers contacted their colleague Jaime Palter, Professor at the University of Rhode Island and an ocean circulation specialist. Gregory de Souza explains: "Satellites the observe the height of the sea surface make it possible to recognise eddies from space. Since the water in them is denser than the surrounding ocean, the eddies form surface depressions that lie up to a metre below the rest of the ocean surface."

From her analysis of the satellite data, Palter determined that on average, seven to eight eddies split off from the Gulf Stream every year. Based on this, the three researchers were able to estimate the amount of iron they carry, which they figure to be probably about 15 percent of the iron delivered by Saharan dust.

However, it is difficult to compare the two sources, since the data are insufficient and somewhat contradictory, as de Souza says: "Above all it isn't clear how much iron from Saharan dust actually dissolves in seawater." The proportion of iron delivered to the North Atlantic Gyre by the Gulf Stream eddies could just as well be anywhere from 3 to 75 percent of that from dust.

This wide range makes it impossible to more precisely pinpoint the relative contribution of iron from Gulf Stream eddies compared to that from Saharan dust. "We need data with higher spatial resolution if we are to calculate the amount of iron from the eddies more accurately," de Souza says, "and we also need a better understanding of which parameters determine the solubility of iron in dust delivered to the ocean surface."

Trace metals drive biological activity
Iron, zinc and other trace metals are essential to the survival of plankton and other microscopic denizens of the open ocean, such as diatoms, algae or bacteria. Cyanobacteria in particular, which are especially abundant in the North Atlantic Gyre, play a key role in the global carbon and nitrogen cycle. They can photosynthesise and fix atmospheric nitrogen, which means they stimulate productivity in the ocean. However, to efficiently fix nitrogen, they require large amounts of iron.

When ocean circulation patterns change, the distributions of trace elements and nutrients change as well. "That's why it's important for us to know where the iron, zinc and other metals are coming from," says de Souza. He acknowledges that climate change could impact the paths of major ocean currents: "At present, we don't know enough to be able to predict what effect this could have on trace metals, and thus on productivity in the oceans."

Research Report: Conway TM, Palter JB, de Souza GF. Gulf Stream rings as a source of iron to the North Atlantic subtropical gyre. Nature Geoscience, published online 2nd July 2018, doi: 10.1038/s41561-018-0162-0


Related Links
ETH Zurich
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Great white spotted off Spain in decades first: marine group
Madrid (AFP) June 30, 2018
A great white shark was spotted in waters off Spain's Balearic Islands this week in what is the first such sighting by scientists in at least 30 years, a marine conservation group said Saturday. The Alnitak group captured footage of the shark, which it said was five metres (16 feet) long, on Thursday in the seas off Cabrera island and followed it for over an hour, it said on its Facebook page, posting a picture. "In the past years there have been possible unconfirmed sightings and various rumour ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
It's in the blood: guiding rafts down Poland's mountain gorge

New head of 'space nation' aims for the stars

Hague, Ovchinin talk ISS mission during presser

Deep space navigation: tool tested as emergency navigation device

WATER WORLD
Looking to the Future with Ariane 6 and Vega C Launchers for Asia-Pacific Customers

Air Force contracts for next generation space launch propulsion system

Virgin Orbit's LauncherOne to join Spaceflight's portfolio of launch vehicles

Air Force contracts SpaceX for satellite launch

WATER WORLD
Opportunity sleeps during a planet-encircling dust storm

Martian Dust Storm Grows Global; Curiosity Captures Photos of Thickening Haze

Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

WATER WORLD
China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

WATER WORLD
SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

A milestone in securing ESA's future role in the global exploration of space

US FCC expands market access for SES O3b MEO constellation

WATER WORLD
Smarter, faster algorithm cuts number of steps to solve problems

New, safer waterproof coating invented by MIT scientists

Indian Space Agency to teach foreign students how to build satellites

Experiments of the Russian scientists in space lead to a new way of 3D-bioprinting

WATER WORLD
Hardy organisms threaten interplanetary contamination

Scientists developing guidebook for finding life beyond Earth

Will we know life when we see it

UW part of NASA network coordinating search for life on exoplanets

WATER WORLD
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.