. 24/7 Space News .
PHYSICS NEWS
Gravity wave insights from internet-beaming balloons
by Staff Writers
Stanford CA (SPX) Sep 03, 2020

Gravity waves emerge when parcels of air are forced upward and then pulled down by gravity.

Giant balloons launched into the stratosphere to beam internet service to Earth have helped scientists measure tiny ripples in our upper atmosphere, uncovering patterns that could improve weather forecasts and climate models.

The ripples, known as gravity waves or buoyancy waves, emerge when blobs of air are forced upward and then pulled down by gravity. Imagine a parcel of air that rushes over mountains, plunges toward cool valleys, shuttles across land and sea and ricochets off growing storms, bobbing up and down between layers of stable atmosphere in a great tug of war between buoyancy and gravity. A single wave can travel for thousands of miles, carrying momentum and heat along the way.

Although lesser known than gravitational waves - undulations in the fabric of space-time - atmospheric gravity waves are ubiquitous and powerful, said Stanford University atmospheric scientist Aditi Sheshadri, senior author of a new study detailing changes in high-frequency gravity waves across seasons and latitudes. They cause some of the turbulence felt on airplanes flying in clear skies and have a strong influence on how storms play out at ground level.

High-flying balloons
Published Aug. 30 in the Journal of Geophysical Research: Atmospheres, the new research draws on superpressure balloon data from the company Loon LLC, which designed the balloons to provide internet access to areas underserved by cell towers or fiber-optic cables. Spun out of Google parent company Alphabet in 2018, Loon has sent thousands of sensor-laden balloons sailing 12 miles up in the stratosphere - well above the altitude of commercial planes and most clouds - for 100 days or more at a stretch.

"This was just a very lucky thing because they weren't collecting data for any scientific mission. But, incidentally, they happened to be measuring position and temperature and pressure," said Sheshadri, who is an assistant professor of Earth system science at Stanford's School of Earth, Energy and Environmental Sciences (Stanford Earth).

The researchers calculated gravity wave motions from data that balloons collected over 6,811 separate 48-hour periods from 2014 to 2018. "To mount an equivalent scientific campaign would be terribly expensive. With the Loon data, the analysis is messier because the data collection was incidental, but it has near-global coverage," Sheshadri said.

Small waves, planetary impact
Gravity waves are an important part of atmospheric dynamics. "They help to drive the overall circulation of the atmosphere, but some gravity waves are too small and too frequent to be observed with satellites," said the study's lead author, Erik Lindgren, who worked on the research as a postdoctoral scholar in Sheshadri's lab.

"These are the gravity waves we have focused on in this study." Earlier studies using atmospheric balloons to track high-frequency gravity waves have typically incorporated data from no more than a few dozen balloon flights, covering smaller areas and fewer seasons.

The Loon data proved particularly valuable for calculating high-frequency gravity waves, which can rise and fall hundreds of times in a day, over distances ranging from a few hundred feet to hundreds of miles. "They're tiny and they change on timescales of minutes. But in an integrated sense, they affect, for instance, the momentum budget of the jet stream, which is this massive planetary scale thing that interacts with storms and plays an important role in setting their course," Sheshadri said.

Gravity waves also influence the polar vortex, a swirl of frigid air that usually hovers over the North Pole and can blast extreme cold into parts of Europe and the United States for months at a time. And they interact with the quasi-biennial oscillation, in which, roughly every 14 months, the belt of winds blowing high over the equator reverses direction - with big impacts on ozone depletion and surface weather far beyond the tropics.

As a result, understanding gravity waves is key to improving weather forecasts at the regional scale, especially as global warming continues to disrupt historical patterns. "Getting gravity waves right would help constrain circulation responses to climate change, like how much it's going to rain in a particular location, the number of storms - dynamical things such as wind and rain and snow," Sheshadri said.

Building better models
Current climate models estimate the effects of high-frequency gravity waves on circulation in a kind of black box, with few constraints from real-world observations or application of the limited existing knowledge of the physical processes at play. "Until now, it has not been entirely clear how these waves behave in different regions or over the seasons at very high frequencies or small scales," Lindgren said.

Sheshadri and colleagues focused on energy associated with high-frequency gravity waves at different time scales, and how that energy varies across seasons and latitudes. They found these waves are larger and build up more kinetic energy in the tropics and during the summer; smaller waves moving with less energy are more common close to the poles and during the winter.

They also found gravity waves changing in sync with the phases of the quasi-biennial oscillation. "We uncovered distinct shifts in gravity wave activity at different times of the year and over different parts of the globe," Lindgren said. "As to exactly why is not clear."

In future research, Sheshadri aims to identify which gravity wave sources are responsible for these differences, and to extrapolate gravity wave amplitudes at very high frequencies from relatively infrequent observations. She said, "Understanding how gravity waves drive circulation in the atmosphere, the interaction between these waves and the mean flow - it's really the next frontier in understanding atmospheric dynamics."


Related Links
Stanford University
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
New collaboration between gravitational-wave astronomy and particle physics
Potsdam, Germany (SPX) Sep 02, 2020
The departments of Professor Alessandra Buonanno (Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI)) and Professor Zvi Bern (Mani L. Bhaumik Institute for Theoretical Physics (University of California in Los Angeles, UCLA)) will cooperate on developing waveform models for future gravitational-wave detectors. Senior researcher Dr. Justin Vines will perform the balancing act between particle physics at UCLA and gravitational-wave modeling at the AEI. For the next two ye ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
NASA seeks next class of Flight Directors for human spaceflight missions

Boeing's Starliner makes progress ahead of flight test with astronauts

The Seventh Meeting of the Japan-U.S. Comprehensive Dialogue on Space: Joint Statement

Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

PHYSICS NEWS
DARPA completes key milestone on Hypersonic Air-breathing Weapons program

Starship could attempt near-earth orbit test flight next year, Elon Musk says

SpaceX launches satellite for Argentina into polar orbit

New launch opportunity begins on Sept 1 for small sats mission

PHYSICS NEWS
China releases recommended Chinese names for Mars craters

Follow Perseverance in real time on its way to Mars

Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

PHYSICS NEWS
Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

PHYSICS NEWS
Gogo announces entry into agreement to sell its Commercial Aviation unit to Intelsat for $400M in Cash

Dragonfly Aerospace emerges from SCS Aerospace Group

Satellite constellations could hinder astronomical research, scientists warn

Africa is investing more in space and satellite industry

PHYSICS NEWS
L3Harris Technologies selected to build space antenna for mobile telecom satellite

Altius Space Machines to develop innovative technologies for satellite servicing

Making Perwave

Purdue, US Army to collaborate on next-generation energetic materials

PHYSICS NEWS
Manchester experts' breakthrough narrows intelligent life search in Milky Way

Bacteria could survive travel between Earth and Mars when forming aggregates

Fifty new planets confirmed in machine learning first

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

PHYSICS NEWS
Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.