. | . |
Gravitational waves from a merged hyper-massive neutron star by Staff Writers London, UK (SPX) Nov 15, 2018
For the first time, astronomers have detected gravitational waves from a merged, hyper-massive neutron star. The scientists, Maurice van Putten of Sejong University in South Korea, and Massimo della Valle of the Osservatorio Astronomico de Capodimonte in Italy, publish their results in Monthly Notices of the Royal Astronomical Society: Letters. Gravitational waves were predicted by Albert Einstein in his General Theory of Relativity in 1915. The waves are disturbances in space-time generated by rapidly moving masses, which propagate out from the source. By the time the waves reach Earth, they are incredibly weak and their detection requires extremely sensitive equipment. It took scientists until 2016 to announce the first observation of gravitational waves using the Laser Interferometer Gravitational Wave Observatory (LIGO) detector. Since that seminal result, gravitational waves have been detected on a further six occasions. One of these, GW170817, resulted from the merger of two stellar remnants known as neutron stars. These objects form after stars much more massive than the Sun explode as supernovae, leaving behind a core of material packed to extraordinary densities. At the same time as the burst of gravitational waves from the merger, observatories detected emission in gamma rays, X-rays, ultraviolet, visible light, infrared and radio waves - an unprecedented observing campaign that confirmed the location and nature of the source. The initial observations of GW170817 suggested that the two neutron stars merged into a black hole, an object with a gravitational field so powerful that not even light can travel quickly enough to escape its grasp. Van Putten and della Valle set out to check this, using a novel technique to analyze the data from LIGO and the Virgo gravitational wave detector sited in Italy. Their detailed analysis shows the H1 and L1 detectors in LIGO, which are separated by more than 3,000 kilometers, simultaneously picked up a descending 'chirp' lasting around 5 seconds. Significantly, this chirp started between the end of the initial burst of gravitational waves and a subsequent burst of gamma rays. Its low frequency (less than 1 KHz, reducing to 49 Hz) suggests the merged object spun down to instead become a larger neutron star, rather than a black hole. There are other objects like this, with their total mass matching known neutron star binary pairs. But van Putten and della Valle have now confirmed their origin. Van Putten comments: "We're still very much in the pioneering era of gravitational wave astronomy. So it pays to look at data in detail. For us this really paid off, and we've been able to confirm that two neutron stars merged to form a larger one." Gravitational wave astronomy, and eking out the data from every detection, will take another step forward next year when the Japanese Kamioka Gravitational Wave Detector (KAGRA) comes online.
Research Report: "Observational Evidence for Extended Emission to GW170817," Maurice H. P. M. van Putten and Massimo Della Valle, 2018 Sep. 4, Monthly Notices of the Royal Astronomical Society: Letters
SOFIA unravels the mysterious formation of star clusters Moffett Field CA (SPX) Nov 12, 2018 The sun, like all stars, was born in a giant cold cloud of molecular gas and dust. It may have had dozens or even hundreds of stellar siblings - a star cluster - but these early companions are now scattered throughout our Milky Way galaxy. Although the remnants of this particular creation event have long since dispersed, the process of star birth continues today within our galaxy and beyond. Star clusters are conceived in the hearts of optically dark clouds where the early phases of formation have histo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |