. | . |
Gravitational wave mirror experiments can evolve into quantum entities by Staff Writers Hamburg, Germany (SPX) Mar 17, 2022
Quantum physical experiments exploring the motion of macroscopic or heavy bodies under gravitational forces require protection from any environmental noise and highly efficient sensing. An ideal system is a highly reflecting mirror whose motion is sensed by monochromatic light, which is photoelectrically detected with high quantum efficiency. A quantum optomechanical experiment is achieved if the quantum uncertainties of light and mirror motion influence each other, ultimately leading to the observation of entanglement between optical and motional degrees of freedom. In AVS Quantum Science, co-published by AIP Publishing and AVS, researchers from Hamburg University in Germany review research on gravitational wave detectors as a historical example of quantum technologies and examine the fundamental research on the connection between quantum physics and gravity. Gravitational wave astronomy requires unprecedented sensitivities for measuring the tiny space-time oscillations at audio-band frequencies and below. The team examined recent gravitational wave experiments, showing it is possible to shield large objects, such as a 40-kilogram quartz glass mirror reflecting 200 kilowatts of laser light, from strong influences from the thermal and seismic environment to allow them to evolve as one quantum object. "The mirror perceives only the light, and the light only the mirror. The environment is basically not there for the two of them," said author Roman Schnabel. "Their joint evolution is described by the Schrodinger equation." This decoupling from the environment, which is central to all quantum technologies, including the quantum computer, enables measurement sensitivities that would otherwise be impossible. The researchers review intersects with Nobel laureate Roger Penrose's work on exploring the quantum behavior of massive objects. Penrose sought to better understand the connection between quantum physics and gravity, which remains an open question. Penrose thought of an experiment in which light would be coupled to a mechanical device via radiation pressure. In their review, the researchers show while these very fundamental questions in physics remain unresolved, the highly shielded coupling of massive devices that reflect laser light is beginning to improve sensor technology. Going forward, researchers will likely explore further decoupling gravitational wave detectors from influences of the environment. More broadly speaking, the decoupling of quantum devices from any thermal energy exchange with the environment is key. It is required for quantum measurement devices as well as quantum computers.
New research discovers link between disparate approaches to quantum gravity Mumbai, India (SPX) Mar 10, 2022 A new study by researchers from the International Centre for Theoretical Sciences (ICTS) and the Perimeter Institute for Theoretical Physics (PI) discovers a unifying thread in two approaches to quantum gravity that were previously believed to be separate. Finding a theory of quantum gravity - which would combine both quantum mechanical and gravitational effects - is one of the great unsolved problems of theoretical physics. Although no complete solution has been found, several distinct approaches ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |