24/7 Space News
CARBON WORLDS
Graphene grows - and we can see it
illustration only
Graphene grows - and we can see it
by Staff Writers
Amsterdam, Netherlands (SPX) Mar 27, 2023

Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood - for the simple reason that the atoms they are made up of are very difficult to observe. A team of researchers from the University of Amsterdam and New York University have now found a surprising way to solve this issue.

Two-dimensional materials, consisting of a hyper-thin single layer of atomic crystal, have attracted a lot of attention recently. This well-deserved attention is mainly due to their unusual properties, very different from their three-dimensional 'bulk' counterparts. Graphene, the most famous representative, and many other two-dimensional materials, are nowadays researched intensely in the laboratory. Perhaps surprisingly, crucial to the special properties of these materials are defects, locations where the crystal structure is not perfect. There, the ordered arrangement of the layer of atoms is disturbed and the coordination of atoms changes locally.

Visualizing atoms
Despite the fact that defects have been shown to be crucial for a material's properties, and they are almost always either present or added on purpose, not much is known about how they form and how they evolve in time. The reason for this is simple: atoms are just too small and move too fast to directly follow them.

In an effort to make the defects in graphene-like materials observable, the team of researchers, from the UvA-Institute of Physics and New York University, found a way to build micrometre-size models of atomic graphene. To achieve this, they used so-called 'patchy particles'. These particles - large enough to be easily visible in a microscope, yet small enough to reproduce many of the properties of actual atoms - interact with the same coordination as atoms in graphene, and form the same structure. The researchers built a model system and used it to obtain insight into defects, their formation and evolution with time. Their results were published in Nature Communications this week.

Building graphene
Graphene is made up of carbon atoms that each have three neighbours, arranged in the well-known 'honeycomb' structure. It is this special structure that lends graphene its unique mechanical and electronic properties. To achieve the same structure in their model, the researchers used tiny particles made of polystyrene, decorated with three even tinier patches of a material known as 3-(trimethoxysilyl)propyl - or TPM for short. The configuration of the TPM patches mimicked the coordination of carbon atoms in the graphene lattice. The researchers then made the patches attractive so that the particles could form bonds with each other, again in analogy with the carbon atoms in graphene.

After being left alone for a few hours, when observed under a microscope the 'mock carbon' particles turned out to indeed arrange themselves into a honeycomb lattice. The researchers then looked in more detail at defects in the model graphene lattice. They observed that also in this respect the model worked: it showed characteristic defect motifs that are also known from atomic graphene. Contrary to real graphene, the direct observation and long formation time of the model now allowed the physicists to follow these defects from the very start of their formation, up to the integration into the lattice.

Unexpected results
The new look at the growth of graphene-like materials immediately led to new knowledge about these two-dimensional structures. Unexpectedly, the researchers found that the most common type of defect already forms in the very initial stages of growth, when the lattice is not yet established. They also observed how the lattice mismatch is then 'repaired' by another defect, leading to a stable defect configuration, which either remains or only very slowly heals further to a more perfect lattice.

Thus, the model system not only allows to rebuild the graphene lattice on a larger scale for all sorts of applications, but the direct observations also allow insights into atomic dynamics in this class of materials. As defects are central to the properties of all atomically thin materials, these direct observations in model systems help further engineer the atomic counterparts, for example for applications in ultra-lightweight materials and optical and electronic devices.

Research Report:Visualizing defect dynamics by assembling the colloidal graphene lattice

Related Links
University of Amsterdam
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Giant underwater waves affect the ocean's ability to store carbon
Cambridge UK (SPX) Mar 19, 2023
Underwater waves deep below the ocean's surface - some as tall as 500 metres - play an important role in how the ocean stores heat and carbon, according to new research. An international team of researchers, led by the University of Cambridge, the University of Oxford, and the University of California San Diego, quantified the effect of these waves and other forms of underwater turbulence in the Atlantic Ocean and found that their importance is not being accurately reflected in the climate models ... read more

CARBON WORLDS
Russia's only female cosmonaut praises ISS mission

Virgin Orbit suspends operations, in wake of failed orbital launch

SpaceX cargo resupply mission CRS-27 scheduled for launch Tuesday

NASA SpaceX Crew-5 splashes down after 5-month mission

CARBON WORLDS
SpaceX launches 56 Starlink satellites from Florida

SpaceX launches its 20th mission of the year with launch of 56 Starlink satellites

Blue Origin hopes to resume space flights 'soon' after 2022 accident

First 3D-printed rocket lifts off but fails to reach orbit

CARBON WORLDS
The race is on for Ingenuity and Perseverance to stay the distance

Spring Past the Marker Band: Sols 3776-3777

Geologists Love a Good Contact: Sols 3773-3775

Waves and a Rock: Sols 3778-3779

CARBON WORLDS
China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

CARBON WORLDS
Sidus Space to power maritime solutions with AIS integration in LizzieSat

Inmarsat and RBC Signals complete live testing of dynamic spectrum leasing solution

TDGA secures New Media Holding as lead investor in $20M seed round for Space Media

Dhruva and Kineis to offer satellite-based services

CARBON WORLDS
New mining technology uses CO2 as tool to access critical minerals

ESA in miniature

NRO awards contracts to BlackSky and Planet Labs for hyperspectral capabilities

Artist Karla Ortiz sees AI 'identity theft', not promise

CARBON WORLDS
Researchers detect silicate clouds, methane, water, carbon monoxide on distant planet

Searching for life with space dust

Webb Telescope spots swirling, gritty clouds on remote planet in spectrum data

Scientists have new tool to estimate how much water might be hidden beneath a planet's surface

CARBON WORLDS
An explaination for unusual radar signatures in the outer solar system

New Horizons team discusses discoveries from the Kuiper Belt

New Horizons team adds AI to Kuiper Belt Object search

Study finds ocean currents may affect rotation of Europa's icy crust

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.