. 24/7 Space News .
TECTONICS
Granite crystallizes at temperature 200 degrees lower than previously thought
by Staff Writers
Troy, New York (SPX) Jun 28, 2018

illustration only

Evidence from rocks in Yosemite National Park suggests that granite stored in the Earth's crust is partially molten at 500 degrees Celsius, nearly 200 degrees lower than had previously been believed. The finding, published online in Nature, challenges long-held assumptions that underlie our views about the state of magma in volcanically active regions, the location of economically important ore deposits, and Earth's geothermal gradient.

"In making predictions, geologists have relied on a crystallization temperature for granite that was established more than half a century ago, using the best tools available at the time," said Michael Ackerson, lead author of the paper. Ackerson's adviser and corresponding author E. Bruce Watson, Institute Professor at Rensselaer Polytechnic Institute, added, "with advances in science and technology, our tools have improved. This finding will affect our understanding of where we find molten rock at depth in the Earth - knowledge that impacts several sub-fields of geology."

The finding draws on research establishing the effects of temperature and pressure on the titanium content of quartz, and builds on previous work which, in 2005, used the relationship between the titanium content of zircon and the temperature at which the zircon crystallized to reveal that early Earth contained liquid water near its surface only 200 million years after the solar system formed.

Beneath the surface of the Earth, temperature and pressure increase with depth. Changes in temperature and pressure with depth in the Earth impart unique chemical signatures in minerals that can subsequently be used to unravel the conditions in which the minerals formed. Quartz is primarily four atoms of oxygen arranged around one atom of silicon, but under certain temperatures and pressures, titanium atoms can replace silicon atoms in the quartz structure.

Through extensive experimentation and analysis, the Watson lab calibrated a "thermobarometer" that relates the concentration of titanium in a quartz crystal to the temperature and pressure under which it formed. In general, higher temperature and lower pressure allow more titanium to infiltrate the crystal, whereas lower temperature and higher pressure impede the incorporation of titanium into the crystal.

When applied to the titanium content of quartz crystals from the Tuolumne Intrusive Suite - a series of granites in Yosemite National Park that constitute a portion of the Sierra Nevada Mountains - the thermobarometer indicates a crystallization temperature of 474 to 561 degrees Celsius, well below the prevailing accepted crystallization temperature of 650-700 degrees Celsius.

These findings are supported by a comparison between quartz crystals from the Tuolumne Intrusive Suite and computer models predicting how titanium concentrations in a growing crystal will change as a function of initial crystallization temperature and cooling rate. Ackerson mapped titanium concentrations in cross-sections of quartz crystals using an electron microprobe.

The maps show variations in titanium concentrations as the crystal grew from a central nucleation point, much as tree rings in the cross section of a tree trunk show the growth of a tree across time. Steep gradients in the cross-sections mark areas where titanium concentrations change rapidly.

Ackerson extracted titanium concentration profiles from those gradients and compared them to computer diffusion models of titanium in quartz under varying initial crystallization temperatures and cooling rates. Diffusion models with an initial crystallization temperature of 500 degrees matched the gradients in Tuolumne suite quartz, thereby confirming the cool crystallization temperatures of quartz.

"Both tests, the 'thermometer' and the diffusion model, use titanium and quartz, but with two completely independent mechanisms to produce observations that show you these quartz crystals are crystallizing from melt at 500 degrees," said Ackerson. "Once you eliminate all the other possibilities, you're left with cold crystallization. And that is surprising."

The result is sufficiently unexpected that Ackerson and Watson said they are just beginning to consider applications. One will certainly be a new perspective on the geothermal gradient, which describes how temperature changes with depth, and therefore where molten materials will be found in the Earth's crust.

Because many economically important ores, like porphyry copper and gold, are underlain by granites, the finding will likely impact the temperature regime under which they are predicted to form. And it may influence how geophysicists interpret data at active magmatic centers like Yellowstone, proving that current interpretations are recording temperatures lower than had been thought possible.

"Low-temperature crystallization of granites and the implications for crustal magmatism" appears in Nature. Watson and Ackerson were joined by co-authors B.O. Mysen of the Carnegie Institution of Washington, and N.D. Tailby of the American Museum of Natural History. Their research was partially funded by the Carnegie Institution of Washington's Postdoctoral Fellowship Program.

Geochemical research fulfills The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be adequately addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration - working with partners across disciplines, sectors, and geographic regions - to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer.

Research at Rensselaer addresses some of the world's most pressing technological challenges - from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.


Related Links
Rensselaer Polytechnic Institute
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
New insight into Earth's crust, mantle and outer core interactions
Liverpool UK (SPX) Jun 11, 2018
A new study by the University of Liverpool, in collaboration with the Universities of Lancaster and Oslo, sheds light on a longstanding question that has puzzled earth scientists. Using previously unavailable data, researchers confirm a correlation between the movement of plate tectonics on the Earth's surface, the flow of mantle above the Earth's core and the rate of reversal of the Earth's magnetic field which has long been hypothesised. In a paper published in the journal Tectonophysics, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Astronaut Sally Ride's legacy of encouraging young women to embrace science and engineering

Space tourism not far off, rocket maker says

Five NASA innovations that could change the way we live and explore

ESA celebrates Unispace+50

TECTONICS
Russia to deliver US new rocket engines

Arianegroup tests innovative technology for next generation upper stage rocket engine

ESA Council commits to Ariane 6 and transition from Ariane 5

Re-generatively cooled RL10 Thrust Chamber Assembly test validates 3D printing process

TECTONICS
Martian Dust Storm Grows Global; Curiosity Captures Photos of Thickening Haze

Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

NASA spacecraft studying massive Martian dust storm

TECTONICS
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TECTONICS
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Lockheed Martin Announces $100 Million Venture Fund Increase

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

TECTONICS
From face recognition to phase recognition

Electronic skin stretched to new limits

Scientists use a photonic quantum simulator to make virtual movies of molecules vibrating

Cementless fly ash binder makes concrete 'green'

TECTONICS
Study reveals simple chemical process that may have led to the origin of life on Earth

ALMA discovers trio of infant planets around newborn star

Astronomers identify 121 giant planets likely to host habitable moons

Hawking plea 'to save planet' beamed to black hole

TECTONICS
A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons

Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.