. 24/7 Space News .
TIME AND SPACE
Going against the flow around a supermassive black hole
by Staff Writers
Charlottesville VA (SPX) Oct 16, 2019

ALMA image showing two disks of gas moving in opposite directions around the black hole in galaxy NGC 1068. The colors in this image represent the motion of the gas: blue is material moving toward us, red is moving away. The white triangles are added to show the accelerated gas that is expelled from the inner disk - forming a thick, obscuring cloud around the black hole.

At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas. When astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to study this cloud in more detail, they made an unexpected discovery that could explain why supermassive black holes grew so rapidly in the early Universe.

"Thanks to the spectacular resolution of ALMA, we measured the movement of gas in the inner orbits around the black hole," explains Violette Impellizzeri of the National Radio Astronomy Observatory (NRAO), working at ALMA in Chile and lead author on a paper published in the Astrophysical Journal. "Surprisingly, we found two disks of gas rotating in opposite directions."

Supermassive black holes already existed when the Universe was young - just a billion years after the Big Bang. But how these extreme objects, whose masses are up to billions of times the mass of the Sun, had time to grow in such a relatively short timespan, is an outstanding question among astronomers.

This new ALMA discovery could provide a clue. "Counter-rotating gas streams are unstable, which means that clouds fall into the black hole faster than they do in a disk with a single rotation direction," said Impellizzeri. "This could be a way in which a black hole can grow rapidly."

NGC 1068 (also known as Messier 77) is a spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. At its center is an active galactic nucleus, a supermassive black hole that is actively feeding itself from a thin, rotating disk of gas and dust, also known as an accretion disk.

Previous ALMA observations revealed that the black hole is not only gulping down material, but also spewing out gas at incredibly high speeds - up to 500 kilometers per second (more than one million miles per hour). This gas that gets expelled from the accretion disk likely contributes to hiding the region around the black hole from optical telescopes.

Impellizzeri and her team used ALMA's superior zoom lens ability to observe the molecular gas around the black hole. Unexpectedly, they found two counter-rotating disks of gas. The inner disk spans 2-4 light-years and follows the rotation of the galaxy, whereas the outer disk (also known as the torus) spans 4-22 light-years and is rotating the opposite way.

"We did not expect to see this, because gas falling into a black hole would normally spin around it in only one direction," said Impellizzeri. "Something must have disturbed the flow, because it is impossible for a part of the disk to start rotating backward all on its own."

Counter-rotation is not an unusual phenomenon in space. "We see it in galaxies, usually thousands of light-years away from their galactic centers," explained co-author Jack Gallimore from Bucknell University in Lewisburg, Pennsylvania.

"The counter-rotation always results from the collision or interaction between two galaxies. What makes this result remarkable is that we see it on a much smaller scale, tens of light-years instead of thousands from the central black hole."

The astronomers think that the backward flow in NGC 1068 might be caused by gas clouds that fell out of the host galaxy, or by a small passing galaxy on a counter-rotating orbit captured in the disk.

At the moment, the outer disk appears to be in a stable orbit around the inner disk. "That will change when the outer disk begins to fall onto the inner disk, which may happen after a few orbits or a few hundred thousand years.

The rotating streams of gas will collide and become unstable, and the disks will likely collapse in a luminous event as the molecular gas falls into the black hole. Unfortunately, we will not be there to witness the fireworks," said Gallimore.

Research paper


Related Links
National Radio Astronomy Observatory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Violent flaring at the heart of a black hole system
Southampton UK (SPX) Oct 14, 2019
An international team of astronomers, led by the University of Southampton, have used state-of-the-art cameras to create a high-frame rate movie of a growing black hole system at a level of detail never seen before. In the process they uncovered new clues to understanding the immediate surroundings of these enigmatic objects. The scientists publish their work in a new paper in Monthly Notices of the Royal Astronomical Society. Black holes can feed off a nearby star and create vast accretion discs ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Luca powers up for a spacewalk

First man to perform spacewalk dies

Emirati astronaut returns home to hero's welcome

'One small nibble for man': 3D printer makes meat in space

TIME AND SPACE
NASA and SpaceX hope for manned mission to ISS in early 2020

SwRI hypersonic research spotlights future flight challenges

Russia eyes launching satellite into orbit from Saudi Arabia

NASA, SpaceX present united front on human spaceflight

TIME AND SPACE
Global analysis of submarine canyons may shed light on Martian landscapes

River relic spied by Mars Express

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

Curiosity findings suggest Mars once featured dozens of shallow briny ponds

TIME AND SPACE
China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

TIME AND SPACE
Call for innovation to advance Europe's lab in space

OmegA team values partnerships with customer, suppliers

Competition to find business ideas that are out of this world

UK space skills support sustainable development

TIME AND SPACE
Astroscale takes next step towards commercial active debris removal mission

AFRL reimagines tech development with virtual reality

There's a new Clean Up Sheriff in LEO

When debris overwhelms space exploitation

TIME AND SPACE
The search for extrasolar planets continues

Scientists find microbial remains in ancient rocks

Liquifying a rocky exoplanet

Using AI to determine exoplanet sizes

TIME AND SPACE
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.