Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Global warming harms lakes
by Staff Writers
Zurich, Switzerland (SPX) Jul 17, 2012


File image: Lake Zurich.

Global warming also affects lakes. Based on the example of Lake Zurich, researchers from the University of Zurich demonstrate that there is insufficient water turnover in the lake during the winter and harmful Burgundy blood algae are increasingly thriving. The warmer temperatures are thus compromising the successful lake clean-ups of recent decades.

Many large lakes in Central Europe became heavily overfertilized in the twentieth century through sewage. As a result, algal blooms developed and cyanobacteria (photosynthetic bacteria) especially began to appear en masse. Some of these organisms form toxins that can compromise the use of the lake water. Dying algal blooms consume a lot of oxygen, thereby reducing the oxygen content in the lake with negative consequences for the fish stocks.

The problem with overfertilization was not merely the absolute amount of oxygen and phosphorus, the two most important nutrients for algae. Mankind has also changed the ratio between the two nutrients: The phosphorus load in lakes has been reduced vastly in recent decades, yet pollution with nitrogen compounds has not decreased on the same scale. The current ratio between the nutrients can thus trigger a mass appearance of certain cyanobacteria, even in lakes that have been deemed "restored".

Burgundy blood algae grow more rapidly
"The problem today is that mankind is changing two sensitive lake properties at the same time, namely the nutrient ratios and, with global warming, water temperature," explains Thomas Posch, a limnologist from the University of Zurich. In collaboration with Zurich Water Supply, he analyzed 40 years' worth of data in a study that has just been published in Nature Climate Change.

The evaluation of this historical data on Lake Zurich reveals that the cyanobacteria Planktothrix rubescens, more commonly known as Burgundy blood algae, has developed increasingly denser blooms in the last 40 years. Like many other cyanobacteria, Planktothrix contains toxins to protect itself from being eaten by small crabs.

Burgundy blood algae were first described in Lake Zurich in 1899 and are a well-known phenomenon for Zurich Water Supply. Consequently, the lake water is painstakingly treated for the drinking-water supply to remove the organism and toxins completely from the raw water.

Warmer lakes have insufficient water turnover
But why does Planktothrix increasingly thrive? The most important natural control of the cyanobacteria blooms occurs in the spring, once the entire lake has cooled down vastly during the winter. Intensive winds trigger the turnover of the surface and deep water.

If the turnover is complete, many cyanobacteria die off in the deep waters of Lake Zurich as they cannot withstand the high pressure, which is still 13 bars at depths of 130 meters. Another positive effect of this turnover is the transportation of fresh oxygen to the deep. However, the situation in Lake Zurich has also changed drastically in the last four decades.

Global warming causes rising temperatures at the water surface. The current values are between 0.6 and 1.2 degrees Celsius above the 40-year average. The winters were increasingly too warm and the lake water was not able to turn over fully as the temperature difference between the surface and depths posed a physical barrier.

The consequences are larger oxygen deficits for a longer period in the lake's deep water and an insufficient reduction of the Burgundy blood algae blooms.

Hope for cold, windy winters
"Unfortunately, we are currently experiencing a paradox. Even though we thought we had partly solved the nutrient problem, in some lakes global warming works against the clean-up measures. Therefore, we primarily need cold winters with strong winds again," says Posch.

As far as the researchers are concerned, the winter of 2011/12 was just what the doctor ordered: The low temperatures and heavy storms allowed the lake to turn over completely and ultimately resulted in a reduction in Planktothrix.

Publikation: Thomas Posch, Oliver Koster, Michaela M. Salcher und Jakob Pernthaler. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change. 8. Juli 2012.Doi: 10.103

.


Related Links
University of Zurich
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Hosepipe bans lifted in Britain after record rains
London (AFP) July 9, 2012
Four water companies in Britain which imposed hosepipe bans earlier this year have lifted the restrictions after months of unseasonable heavy rain. The move comes after a week of torrential downpours triggered floods across large swathes of the country in the wettest June on record in Britain. In a joint statement, water suppliers said "abnormally heavy rainfall" meant groundwater suppli ... read more


WATER WORLD
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

WATER WORLD
Orbiter Enters, Then Exits, Standby Safe Mode

NASA's Mars rover two weeks from landing

Developing Technologies For Living Off the Land...In Space

Follow Your Curiosity: Some New Ways to Explore Mars

WATER WORLD
Titanic II to have 'safety deck': Australian tycoon

Me and My Spacesuit

Nose Landing Gear Tested for Dream Chaser Spacecraft

Virgin Galactic Reveals Privately Funded Satellite Launcher and Confirms SpaceShipTwo Poised for Powered Flight

WATER WORLD
Astronauts in good shape after return

Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

WATER WORLD
Russian rocket launches new crew to space

Science, Maintenance for Station Crew; Launch Preps for New Crew Members

ESA astronaut Andre Kuipers returns to Earth

First Annual ISS Research and Development Conference in Review

WATER WORLD
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

WATER WORLD
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

WATER WORLD
Microsoft revamps Office with 'cloud' links

New Dell fund will invest in data storage technology

Smart materials get SMARTer

Samsung to buy part of British electronics firm




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement