. 24/7 Space News .
ROBO SPACE
Giving robots a better feel for object manipulation
by Rob Matheson, MIT News Office
Boston MA (SPX) Apr 23, 2019

A new "particle simulator" developed by MIT researchers improves robots' abilities to mold materials into simulated target shapes and interact with solid objects and liquids. This could give robots a refined touch for industrial applications or for personal robotics- such as shaping clay or rolling sticky sushi rice.

A new learning system developed by MIT researchers improves robots' abilities to mold materials into target shapes and make predictions about interacting with solid objects and liquids. The system, known as a learning-based particle simulator, could give industrial robots a more refined touch - and it may have fun applications in personal robotics, such as modelling clay shapes or rolling sticky rice for sushi.

In robotic planning, physical simulators are models that capture how different materials respond to force. Robots are "trained" using the models, to predict the outcomes of their interactions with objects, such as pushing a solid box or poking deformable clay.

But traditional learning-based simulators mainly focus on rigid objects and are unable to handle fluids or softer objects. Some more accurate physics-based simulators can handle diverse materials, but rely heavily on approximation techniques that introduce errors when robots interact with objects in the real world.

In a paper being presented at the International Conference on Learning Representations in May, the researchers describe a new model that learns to capture how small portions of different materials - "particles" - interact when they're poked and prodded.

The model directly learns from data in cases where the underlying physics of the movements are uncertain or unknown. Robots can then use the model as a guide to predict how liquids, as well as rigid and deformable materials, will react to the force of its touch. As the robot handles the objects, the model also helps to further refine the robot's control.

In experiments, a robotic hand with two fingers, called "RiceGrip," accurately shaped a deformable foam to a desired configuration - such as a "T" shape - that serves as a proxy for sushi rice. In short, the researchers' model serves as a type of "intuitive physics" brain that robots can leverage to reconstruct three-dimensional objects somewhat similarly to how humans do.

"Humans have an intuitive physics model in our heads, where we can imagine how an object will behave if we push or squeeze it. Based on this intuitive model, humans can accomplish amazing manipulation tasks that are far beyond the reach of current robots," says first author Yunzhu Li, a graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

"We want to build this type of intuitive model for robots to enable them to do what humans can do."

"When children are 5 months old, they already have different expectations for solids and liquids," adds co-author Jiajun Wu, a CSAIL graduate student. "That's something we know at an early age, so maybe that's something we should try to model for robots."

Joining Li and Wu on the paper are: Russ Tedrake, a CSAIL researcher and a professor in the Department of Electrical Engineering and Computer Science (EECS); Joshua Tenenbaum, a professor in the Department of Brain and Cognitive Sciences; and Antonio Torralba, a professor in EECS and director of the MIT-IBM Watson AI Lab.

Dynamic graphs
A key innovation behind the model, called the "particle interaction network" (DPI-Nets), was creating dynamic interaction graphs, which consist of thousands of nodes and edges that can capture complex behaviors of so-called particles.

In the graphs, each node represents a particle. Neighboring nodes are connected with each other using directed edges, which represent the interaction passing from one particle to the other. In the simulator, particles are hundreds of small spheres combined to make up some liquid or a deformable object.

The graphs are constructed as the basis for a machine-learning system called a graph neural network. In training, the model over time learns how particles in different materials react and reshape. It does so by implicitly calculating various properties for each particle - such as its mass and elasticity - to predict if and where the particle will move in the graph when perturbed.

The model then leverages a "propagation" technique, which instantaneously spreads a signal throughout the graph. The researchers customized the technique for each type of material - rigid, deformable, and liquid - to shoot a signal that predicts particles positions at certain incremental time steps. At each step, it moves and reconnects particles, if needed.

For example, if a solid box is pushed, perturbed particles will be moved forward. Because all particles inside the box are rigidly connected with each other, every other particle in the object moves the same calculated distance, rotation, and any other dimension.

Particle connections remain intact and the box moves as a single unit. But if an area of deformable foam is indented, the effect will be different. Perturbed particles move forward a lot, surrounding particles move forward only slightly, and particles farther away won't move at all. With liquids being sloshed around in a cup, particles may completely jump from one end of the graph to the other. The graph must learn to predict where and how much all affected particles move, which is computationally complex.

Shaping and adapting
In their paper, the researchers demonstrate the model by tasking the two-fingered RiceGrip robot with clamping target shapes out of deformable foam. The robot first uses a depth-sensing camera and object-recognition techniques to identify the foam.

The researchers randomly select particles inside the perceived shape to initialize the position of the particles. Then, the model adds edges between particles and reconstructs the foam into a dynamic graph customized for deformable materials.

Because of the learned simulations, the robot already has a good idea of how each touch, given a certain amount of force, will affect each of the particles in the graph. As the robot starts indenting the foam, it iteratively matches the real-world position of the particles to the targeted position of the particles. Whenever the particles don't align, it sends an error signal to the model. That signal tweaks the model to better match the real-world physics of the material.

Next, the researchers aim to improve the model to help robots better predict interactions with partially observable scenarios, such as knowing how a pile of boxes will move when pushed, even if only the boxes at the surface are visible and most of the other boxes are hidden.

The researchers are also exploring ways to combine the model with an end-to-end perception module by operating directly on images. This will be a joint project with Dan Yamins's group; Yamin recently completed his postdoc at MIT and is now an assistant professor at Stanford University.

"You're dealing with these cases all the time where there's only partial information," Wu says. "We're extending our model to learn the dynamics of all particles, while only seeing a small portion."

Research Report: "Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids"


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Space Robotics Market to Surpass $3.5bn by 2025
Selbyville DE (SPX) Apr 09, 2019
The space robotics market is predicted to hike from USD 2 billion in 2018 to around USD 3.5 billion by 2025, according to a 2019 Global Market Insights, Inc. report. The market is experiencing rapid technical development owing to the integration of AI technologies into systems developed for space exploration. Several companies are developing AI-based robots that provide enhanced mobility and manipulation benefits. These machines can perform highly-complex tasks for a longer duration and offer mini ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Music for space

NASA astronaut to set record for longest spaceflight by a woman

Asteroids help scientists measure distant stars

Asteroids Help Scientists Measure Diameters of Faraway Stars

ROBO SPACE
Sea Launch venture may be moved from US to Russia's Far East

SpaceX loses Falcon Heavy rocket center core booster in Atlantic

Arianespace completes deployment of O3b constellation

Europe's institutions consider Ariane 6 and Vega-C

ROBO SPACE
A small step for China: Mars base for teens opens in desert

ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

ROBO SPACE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

ROBO SPACE
Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Forging the future

Preserving heritage data at ESA

Spacecraft Repo Operations

ROBO SPACE
Wonder materials: 2D phosphorene nanoribbons and 2D borophene get a closer look

Industrial 3D printing goes skateboarding

China to complete $545 mn modernisation for Tajik smelter

India's ASAT 'Justified'

ROBO SPACE
Astronomers discover third planet in the Kepler-47 circumbinary system

Powerful particles and tugging tides may affect extraterrestrial life

Global Challenge Launched to Build Exoplanet Data Solutions

TESS finds its first Earth-sized planet

ROBO SPACE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.