. 24/7 Space News .
STELLAR CHEMISTRY
Ghostly 'mirror world' might be cause of cosmic controversy
by Staff Writers
Albuquerque NM (SPX) May 20, 2022

An artist's rendition of the COBE Satellite. Credit: Matthew Verdolivo, UC, Davis

New research suggests an unseen 'mirror world' of particles that interacts with our world only via gravity that might be the key to solving a major puzzle in cosmology today - the Hubble constant problem.

The Hubble constant is the rate of expansion of the universe today. Predictions for this rate - from cosmology's standard model - are significantly slower than the rate found by our most precise local measurements. This discrepancy is one that many cosmologists have been trying to solve by changing our current cosmological model.

The challenge is to do so without ruining the agreement between standard model predictions and many other cosmological phenomena, such as the cosmic microwave background. Determining whether such a cosmological scenario exists is the question that researchers, including Francis-Yan Cyr-Racine, assistant professor in the Department of Physics and Astronomy at The University of New Mexico, Fei Ge and Lloyd Knox at the University of California, Davis have been trying to answer.

According to NASA, cosmology is the scientific study of the large-scale properties of the universe as a whole. Cosmologists study concepts such as dark matter, and dark energy and whether there is one universe or many, sometimes called a multiverse. Cosmology entails the entire universe from birth to death with mysteries and intrigue at every turn.

Now, Cyr-Racine, Ge, and Knox have discovered a previously unnoticed mathematical property of cosmological models which could, in principle, allow for a faster expansion rate while hardly changing the most precisely tested other predictions of the standard cosmological model. They found that a uniform scaling of the gravitational free-fall rates and photon-electron scattering rate leaves most dimensionless cosmological observables nearly invariant.

"Basically, we point out that a lot of the observations we do in cosmology have an inherent symmetry under rescaling the universe as a whole. This might provide a way to understand why there appears to be a discrepancy between different measurements of the Universe's expansion rate."

This result opens a new approach to reconciling cosmic microwave background and large-scale structure observations with high values of the Hubble constant H0: Find a cosmological model in which the scaling transformation can be realized without violating any measurements of quantities not protected by the symmetry.

This work has opened a new path toward resolving what has proved to be a challenging problem. Further model building might bring consistency with the two constraints not yet satisfied: the inferred primordial abundances of deuterium and helium.

If the universe is somehow exploiting this symmetry researchers are led to an extremely interesting conclusion: that there exists a mirror universe very similar to ours but invisible to us except through gravitational impact on our world. Such "mirror world" dark sector would allow for an effective scaling of the gravitational free-fall rates while respecting the precisely measured mean photon density today.

"In practice, this scaling symmetry could only be realized by including a mirror world in the model - a parallel universe with new particles that are all copies of known particles," said Cyr-Racine. "The mirror world idea first arose in the 1990s but has not previously been recognized as a potential solution to the Hubble constant problem.

"This might seem crazy at face value, but such mirror worlds have a large physics literature in a completely different context since they can help solve important problem in particle physics," explains Cyr-Racine. "Our work allows us to link, for the first time, this large literature to an important problem in cosmology."

In addition to searching for missing ingredients in our current cosmological model, researchers are also wondering whether this Hubble constant discrepancy could be caused in part by measurement errors. While it remains a possibility, it is important to note that the discrepancy has become more and more significant as higher quality data have been included in the analyses, suggesting that the data might not be at fault.

"It went from two and a half Sigma, to three, and three and a half to four Sigma. By now, we are pretty much at the five-Sigma level," said Cyr-Racine. "That's the key number which makes this a real problem because you have two measurements of the same thing, which if you have a consistent picture of the universe should just be completely consistent with each other, but they differ by a very statistically significant amount."

"That's the premise here and we've been thinking about what could be causing that and why are these measurements discrepant? So that's a big problem for cosmology. We just don't seem to understand what the universe is doing today."

The research, titled Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant, was published recently in Physical Review Letters.

Research Report:Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant,


Related Links
University of New Mexico
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Extraterrestrial stone brings first supernova clues to Earth
Johannesburg, South Africa (SPX) May 18, 2022
New chemistry 'forensics' indicate that the stone named Hypatia from the Egyptian desert could be the first tangible evidence found on Earth of a supernova type Ia explosion. These rare supernovas are some of the most energetic events in the universe. This is the conclusion from a new study published in the journal Icarus, by Jan Kramers, Georgy Belyanin and Hartmut Winkler of the University of Johannesburg, and others. Since 2013, Belyanin and Kramers have discovered a series of highly unus ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Engineers investigating Voyager 1 telemetry data

Blue Origin delays next flight over technical issues

Boeing's Starliner faces one more challenge as it returns to Earth

Soil, sutures, and climate modeling among investigations riding SpaceX CRS-25 Dragon to ISS

STELLAR CHEMISTRY
Blue Origin scrubs Friday launch over vehicle issue

Artemis I Moon Rocket to Return to Launch Pad 39B in Early June

UK company reveals micro-launcher rocket

Musk, Bolsonaro talk free speech, deforestation in Brazil

STELLAR CHEMISTRY
Everyone wants a piece of this Pie - Sols 3478-3479

China's Zhurong rover switches to dormant mode in severe Martian dust storm

Sampling Strategy for the Delta Front Campaign

Status Update on NASA's MAVEN Spacecraft

STELLAR CHEMISTRY
Researchers start planting space-bred seeds returned by Shenzhou-13

New cargo spacecraft being built

The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

Tianwen-1 mission marks first year on Mars

STELLAR CHEMISTRY
OneWeb and TinSky complete first West African LEO Satellite Gateway

Spire Global to launch five satellites on SpaceX Transporter-5 Mission

Why the Space-as-a-Service Business Models are Taking the Space Sector by Storm

Navarino teams with OneWeb to extend connectivity to commercial shipping

STELLAR CHEMISTRY
Benchmark Space Systems to support Space Forge's Sustainable In-Space Manufacturing Mission

Varda Space Industries orders 4th Photon from Rocket Lab for In-Space Manufacturing

LeoLabs to support Japan Air Self Defense Force with Commercial Space Domain Awareness

Preparation for LizzieSat-1 Mission continues as NASA customer completes important milestone

STELLAR CHEMISTRY
AI reveals unsuspected math underlying search for exoplanets

Planets of binary stars as possible homes for alien life

Seeing through the fog-pinpointing young stars and their protoplanetary disks

The search for how life on Earth transformed from simple to complex

STELLAR CHEMISTRY
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.