. 24/7 Space News .
TIME AND SPACE
Getting up to speed on the proton
by Joseph E. Harmon for Argonne News
Lemont, IL (SPX) Oct 28, 2021

Artistic rendering of proton structure revealing its intricate and dynamic system of quarks and gluons. (Image by Argonne National Laboratory.)

Scientists develop groundbreaking theory for calculating what's happening inside a proton travelling at the speed of light. For more than 2,000 years, scientists thought the atom was the smallest particle possible. Then, they discovered that it has a nucleus made up of protons and neutrons surrounded by electrons. After that, they found that the protons and neutrons themselves have a complex inner world full of quarks and antiquarks held together by a superglue-like force created by gluons.

"Protons along with neutrons constitute over 99 percent of the visible universe, meaning everything from galaxies and stars to us," said Yong Zhao - a physicist at the U.S. Department of Energy's (DOE) Argonne National Laboratory. "Yet, there is still much we do not know about the rich inner life of protons or neutrons."

Zhao has co-authored a paper on an innovative method for calculating the quark and gluon structure of a proton travelling at the speed of light. The name of the team's creation is large-momentum effective theory, LaMET for short, which works jointly with a theory called lattice quantum chromodynamics (QCD).

The proton is tiny - about 100,000 times smaller than an atom, so physicists often model it as a point with no dimensions. But these new theories can predict what's happening within the speed-of-light proton as though it were a body of three dimensions.

The concept of momentum is vital to not only LaMET but physics in general. It equals the speed of an object times its mass.

More than a half century ago, Zhao explained, a simple quark model by physicists Murray Gell-Mann and George Zweig uncovered some of the inner structure of the proton while at rest (no momentum). From that model, scientists pictured the proton as consisting of three quarks and predicted their essential properties, such as electric charge and spin.

Later experiments with protons accelerated to close to the speed of light demonstrated that the proton is even more complex than originally thought. For example, it contains uncountable particles that interact with one another - not just three quarks bound by gluons. And the gluons can briefly turn into quark-antiquark pairs before they destroy each other and become a gluon again. Particle accelerators like that at DOE's Fermi National Accelerator Laboratory produced most of these results.

"When you accelerate the proton and collide it with a target, that's when the magic happens in terms of revealing its many mysteries," Zhao said.

About five years after the simple quark model rocked the physics community, a model proposed by Richard Feynman pictured the proton travelling at near the speed of light as a beam carrying an infinite number of quarks and gluons moving in the same direction. He called these particles "partons." His parton model has inspired physicists to define a set of quantities that describe the 3D proton structure. Researchers could then measure these quantities in experiments at particle accelerators.

Earlier calculations with the best available theory at the time (lattice QCD) produced some illuminating details about the distribution of quarks and gluons in the proton. But they had a serious shortcoming: They could not accurately distinguish between fast- and slow-moving partons.

The difficulty was that lattice QCD could only calculate the properties of the proton that do not depend on its momentum. But applying Feynman's parton model to lattice QCD requires knowing the properties of a proton with infinite momentum, which means that the proton particles must all be traveling at the speed of light. Partially filling that knowledge gap, LaMET provides a recipe for calculating the parton physics from lattice QCD for large but finite momentum.

"We have been developing and refining LaMET over the last eight years," said Zhao. "Our paper summarizes this work."

Running on supercomputers, lattice QCD calculations with LaMET are generating new and improved predictions about the structure of the speed-of-light proton. These predictions can then be put to the test in a new one-of-a-kind facility called the Electron-Ion Collider (EIC). This facility is being built at DOE's Brookhaven National Laboratory.

"Our LaMET can also predict useful information about quantities that are extraordinarily difficult to measure," said Zhao. "And with powerful enough supercomputers, in some cases, our predictions could even be more precise than possible to measure at the EIC."

With deeper understanding of the 3D quark-gluon structure of matter using theory and EIC measurements, scientists are poised to reach a far more detailed picture of the proton. We will then be entering a new age of parton physics.

Research Report: Large-momentum effective theory


Related Links
Argonne National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Upgrading the Space Station's Cold Atom Lab with mixed reality
Pasadena CA (JPL) Oct 27, 2021
NASA's Cold Atom Lab is a first-of-its-kind physics laboratory operating in Earth orbit. About the size of a mini-fridge, it hosts multiple experiments that explore the fundamental nature of atoms by cooling them down to nearly absolute zero (the coldest temperature matter can reach). The ultracold atoms provide a window into the quantum realm, where matter exhibits strange behaviors that underpin many modern technologies. In 2020, during her extended stay aboard the space station, NASA astronaut ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

Nanoracks, Voyager Space, and Lockheed Martin to develop commercial space module

Blue Origin, partners announce plans for private space station

Printable steak, insect protein, fungus among NASA space food idea winners

TIME AND SPACE
Ten years of Soyuz at Europe's Spaceport

US targeting Feb. 2022 to launch new lunar program Artemis

SpaceX conducts 2 test firings of Starship 20 in Texas

South Korea launches own space rocket for the first time

TIME AND SPACE
Ingenuity Mars Helicopter Flight 14 Successful

China's Mars orbiter resumes communications with Earth

Mars helicopter Ingenuity approaches 14th flight

Hear sounds from Mars captured by Perseverance Rover

TIME AND SPACE
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

TIME AND SPACE
From Polar Bears to Polar Orbits

Conclusions from Satellite Constellations 2 Released

Russian Soyuz rocket launches 36 new UK satellites

Over half OneWeb constellation now deployed

TIME AND SPACE
Energy-efficient separation of a greenhouse gas: New study from Pusan National University

Shape-shifting materials with infinite possibilities

Stronger than spider silk: Bagworm silk enables strong conducting fibers

Smart material switches between heating and cooling in minutes

TIME AND SPACE
Researchers call for armchair astronomers to help find unknown hidden worlds

Astronomers provide 'Field Guide' to Exoplanets known as Hot Jupiters

NEID Spectrometer Lights Up Path to Exoplanet Exploration

Scientists find evidence the early solar system harbored a gap between its inner and outer regions

TIME AND SPACE
Keeping our eyes on New Horizons

The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.