![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Knoxville TN (SPX) Aug 28, 2018
A new study could help explain the driving force behind the largest mass extinction in the history of earth, known as the End-Permian Extinction. The event, also known as the Great Dying, occurred around 250 million years ago when a massive volcanic eruption in what is today the Russian province of Siberia sent nearly 90 percent of all life right into extinction. Geologists call this eruption the Siberian Flood Basalts, and it ran for almost a million years. "The scale of this extinction was so incredible that scientists have often wondered what made the Siberian Flood Basalts so much more deadly than other similar eruptions," said Michael Broadley, a postdoctoral researcher at the Centre for Petrographic and Geochemical Research in Vandoeuvre-les-Nancy, France, and lead author of the paper. The work, which was published in Nature Geoscience, was co-authored by Lawrence (Larry) Taylor, the former director of the Planetary Geosciences Institute at the University of Tennessee, Knoxville. Taylor, whose prolific career at UT spanned 46 years, passed away in September 2017 at age 79. According to Broadley, "Taylor was instrumental in supplying samples of mantle xenoliths, rock sections of the lithosphere [a section of the planet located between the crust and the mantle] that get captured by the passing magma and erupted to the surface during the volcanic explosion. Taylor also provided advice throughout the study." Through the analysis of samples, Broadley and his team tried to determine the composition of the lithosphere. They found that before the Siberian Flood Basalts took place, the Siberian lithosphere was heavily loaded with chlorine, bromine, and iodine, all chemical elements from the halogen group. However, these elements seem to have disappeared after the volcanic eruption. "We concluded that the large reservoir of halogens that was stored in the Siberian lithosphere was sent into the earth's atmosphere during the volcanic explosion, effectively destroying the ozone layer at the time and contributing to the mass extinction," Broadley said.
![]() ![]() Amber fossils illuminate early antlion evolution Washington (UPI) Aug 22, 2018 Newly analyzed amber fossils have helped scientists characterize the evolutionary history of myrmeleontiformia, a group of lacewing insects that includes antlions and is distinguished by predatory larvae and unusual morphologies. Because the larvae of antlions and their relatives fail to fossilize outside amber inclusions, the fossil record is limited. The newly surveyed Burmese amber fossils, hailing from the mid-Cretaceous, allowed scientists to compare extant and extinct myrmeleontiformia ta ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |