![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Jennifer Chu for MIT News Boston MA (SPX) Feb 04, 2021
The temperature of a planet is linked with the diversity of life that it can support. MIT geologists have now reconstructed a timeline of the Earth's temperature during the early Paleozoic era, between 510 and 440 million years ago - a pivotal period when animals became abundant in a previously microbe-dominated world. In a study appearing in the Proceedings of the National Academy of Sciences, the researchers chart dips and peaks in the global temperature during the early Paleozoic. They report that these temperature variations coincide with the planet's changing diversity of life: Warmer climates favored microbial life, whereas cooler temperatures allowed more diverse animals to flourish. The new record, more detailed than previous timelines of this period, is based on the team's analysis of carbonate muds - a common type of limestone that forms from carbonate-rich sediments deposited on the seafloor and compacted over hundreds of millions of years. "Now that we have shown you can use these carbonate muds as climate records, that opens the door to looking back at this whole other part of Earth's history where there are no fossils, when people don't really know much about what the climate was," says lead author Sam Goldberg, a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS). Goldberg's co-authors are Kristin Bergmann, the D. Reid Weedon, Jr. Career Development Professor in EAPS, along with Theodore Present of Caltech and Seth Finnegan of the University of California at Berkeley.
Beyond fossils "As an example, if carbonate precipitates at 4 degrees Celsius, more oxygen-18 ends up in the mineral, from the same starting composition of water, [compared to] carbonate precipitating at 30 degrees Celsius," Bergmann explains. "So, the ratio of oxygen-18 to -16 increases as temperature cools." In this way, scientists have used ancient carbonate shells to backtrack the temperature of the surrounding seawater - an indicator of the Earth's overall climate - at the time the shells first precipitated. But this approach has taken scientists only so far, up until the earliest fossils. "There is about 4 billion years of Earth history where there were no shells, and so shells only give us the last chapter," Goldberg says.
A clumped isotope signal "People have often overlooked mud. They thought that if you try to use it as a temperature indicator, you might be looking at not the original ocean temperature in which it formed, but the temperature of a process that occurred later on, when the mud was buried a mile below the surface," Goldberg says. To see whether carbonate muds might preserve signatures of their original surrounding temperature, the team used "clumped isotope geochemistry," a technique used in Bergmann's lab, which analyzes sediments for clumping, or pairing, of two heavy isotopes: oxygen-18 and carbon-13. The likelihood of these isotopes pairing up in carbonate muds depends on temperature but is unaffected by the ocean chemistry in which the muds form. Combining this analysis with traditional oxygen isotope measurements provides additional constraints on the conditions experienced by a sample between its original formation and the present. The team reasoned that this analysis could be a good indication of whether carbonate muds remained unchanged in composition since their formation. By extension, this could mean the oxygen-18 to -16 ratio in some muds accurately represents the original temperature at which the rocks formed, enabling their use as a climate record.
Ups and downs In 2016 and 2017, teams traveled first to Svalbard, then Newfoundland, to collect samples of carbonate muds from layers of deposited sediment spanning a period of 70 million years, from the mid-Cambrian, when animals began to flourish on Earth, through the Ordovician periods of the Paleozoic era. When they analyzed the samples for clumped isotopes, they found that many of the rocks had experienced little chemical change since their formation. They used this result to compile the rocks' oxygen isotope ratios from 10 different early Paleozoic sites to calculate the temperatures at which the rocks formed. The temperatures calculated from most of these sites were similar to previously published lower-resolution fossil temperature records. In the end, they mapped a timeline of temperature during the early Paleozoic and compared this with the fossil record from that period, to show that temperature had a big effect on the diversity of life on the planet. "We found that when it was warmer at the end of the Cambrian and early Ordovician, there was also a peak in microbial abundance," Goldberg says. "From there it cooled off going into the middle to late Ordovician, when we see abundant animal fossils, before a substantial ice age ends the Ordovician. Previously people could only observe general trends using fossils. Because we used a material that's very abundant, we could create a higher-resolution record and could see more clearly defined ups and downs." "This is the best recent isotopic study addressing the critical question of whether early animals experienced hot early temperatures," says Ethan Grossman, a professor of geology at Texas A and M University, who was not a contributor to the study. "We should use all the tools at our disposal to explore this important time interval." The team is now looking to analyze older muds, dating back before the appearance of animals, to gauge the Earth's temperature changes prior to 540 million years ago. "To go back beyond 540 million years ago, we have to grapple with carbonate muds, because they are really one of the few records we have to constrain climate in the distant past," Bergmann says.
![]() ![]() Experiments show the record of early life could be full of "false positives" Boulder CO (SPX) Jan 29, 2021 For most of Earth's history, life was limited to the microscopic realm, with bacteria occupying nearly every possible niche. Life is generally thought to have evolved in some of the most extreme environments, like hydrothermal vents deep in the ocean or hot springs that still simmer in Yellowstone. Much of what we know about the evolution of life comes from the rock record, which preserves rare fossils of bacteria from billions of years ago. But that record is steeped in controversy, with each new ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |