. | . |
"Game changer" perovskite can detect gamma rays by Staff Writers Lausanne, Switzerland (SPX) Dec 14, 2020
Perovskites are materials made up of organic compounds bound to a metal. Propelled into the forefront of materials' research because of their structure and properties, perovskites are earmarked for a wide range of applications, including in solar cells, LED lights, lasers, and photodetectors. That last application, photo - or light - detection, is of particular interest to scientists at EPFL's School of Basic Sciences who have developed a perovskite that can detect gamma rays. Led by the labs of Professors Laszlo Forro and Andreas Pautz, the researchers have published their work in Advanced Science. "This photovoltaic perovskite crystal, grown in this kilogram size, is a game changer," says Forro. "You can slice it into wafers, like silicon, for optoelectronic applications, and, in this paper, we demonstrate its utility in gamma-ray detection."
Monitoring gamma rays But exactly because gamma rays can affect biological tissue, we have to be able to keep an eye on them. To do this, we need simple, reliable, and cheap gamma-ray detectors. The perovskite that the EPFL scientists developed is based on crystals of methylammonium lead tribromide (MAPbBr3) and seems to be an ideal candidate, meeting all these requirements.
Crystal-clear advantages The perovskite crystals that the EPFL scientists made show high clarity with very low impurities. When they tested gamma-rays on the crystals, they found that they generated photo-carriers with a high "mobility-lifetime product", which is a measurement of the quality of radiation detectors. In short, the perovskite can efficiently detect gamma rays at room temperatures, simply by resistivity measurement.
Cheaper and scalable synthesis Of course, this is not the first perovskite made for gamma ray-detection. But the volume of most lab-grown metal halide perovskites used for this is limited to about 1.2 ml, which is hardly scalable to commercial levels. However, the team at EPFL also developed a unique method called 'oriented crystal-crystal intergrowth' that allowed them to make a whole liter of crystals weighing 3.8 kg in total. "Personally, I enjoyed very much to work at the common frontiers of condensed matter physics, chemistry and reactor physics, and to see that this collaboration could lead to important application to our society," says Pavao Andricevic, the lead-author.
Research Report: Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements
Cosmic flashes come in all different sizes Gothenburg, Sweden (SPX) Nov 18, 2020 By studying the site of a spectacular stellar explosion seen in April 2020, a Chalmers-led team of scientists have used four European radio telescopes to confirm that astronomy's most exciting puzzle is about to be solved. Fast radio bursts, unpredictable millisecond-long radio signals seen at huge distances across the universe, are generated by extreme stars called magnetars - and are astonishingly diverse in brightness. For over a decade, the phenomenon known as fast radio bursts has excited and ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |