. 24/7 Space News .
STELLAR CHEMISTRY
Galaxies Lacking Dark Matter Do in Fact Exist
by Staff Writers
Kamuela HI (SPX) Apr 04, 2019

file image

After drawing both praise and skepticism, the team of astronomers who discovered NGC 1052-DF2 - the very first known galaxy to contain little to no dark matter - are back with stronger evidence about its bizarre nature.

Dark matter is a mysterious, invisible substance that typically dominates the makeup of galaxies; finding an object that's missing dark matter is unprecedented, and came as a complete surprise.

"If there's one object, you always have a little voice in the back of your mind saying, 'but what if you're wrong?' Even though we did all the checks we could think of, we were worried that nature had thrown us for a loop and had conspired to make something look really special whereas it was really something more mundane," said team leader Pieter van Dokkum, Sol Goldman Family Professor of Astronomy at Yale University.

Now, van Dokkum's team has not one, but two, new studies supporting their initial observations, demonstrating that dark matter is in fact separable from galaxies.

Team members include Roberto Abraham, Professor of Astronomy and Astrophysics at the University of Toronto, Aaron Romanowsky, Associate Professor of Physics and Astronomy at San Jose State University, Charlie Conroy, Professor of Astronomy at Harvard University, and Shany Danieli, a graduate student at Yale University.

"The fact that we're seeing something that's just completely new is what's so fascinating," said Danieli, who first spotted the galaxy about two years ago. "No one knew that such galaxies existed, and the best thing in the world for an astronomy student is to discover an object, whether it's a planet, a star, or a galaxy, that no one knew about or even thought about."

In the first study, the team confirmed their initial observations of NGC 1052-DF2, or DF2 for short, which show dark matter is practically absent in the galaxy. Using W. M. Keck Observatory's Keck Cosmic Web Imager (KCWI), they gathered more precise measurements and found that the globular clusters inside the galaxy are indeed moving at a speed consistent with the mass of the galaxy's normal matter. If there were dark matter in DF2, the clusters would be moving much faster.

"KCWI is unique because of the combination of its large survey area," said lead author Danieli. "The instrument not only allows us to see the whole galaxy at once, its high spectral resolution also enables us to measure the mass accurately. There is no other instrument in the world that has those two properties!"

In the second study, van Dokkum and Danieli, along with team members Roberto Abraham (University of Toronto), Aaron Romanowsky (San Jose State University), and Charlie Conroy (Harvard) used Keck Observatory's Low Resolution Imaging Spectrometer (LRIS) to find another galaxy devoid of dark matter, named NGC 1052-DF4, or DF4 for short.

"Discovering a second galaxy with very little to no dark matter is just as exciting as the initial discovery of DF2," said van Dokkum, who is the lead author on the DF4 paper. "This means the chances of finding more of these galaxies are now higher than we previously thought. Since we have no good ideas for how these galaxies were formed, I hope these discoveries will encourage more scientists to work on this puzzle."

The team's results are published in The Astrophysical Journal Letters; the first study appears in this week's issue, while the second study appears in the March 20th issue.

Like DF2, DF4 belongs to a relatively new class of galaxies called ultra-diffuse galaxies (UDGs). They are as large as the Milky Way but have between 100 to 1,000 times fewer stars, making them appear fluffy and translucent, therefore difficult to observe.

Ironically, the lack of dark matter in these UDGs strengthens the dark matter theory. It proves that dark matter is a substance that is not coupled to 'normal' matter, as both can be found separately. The discovery of these galaxies is difficult to explain in theories that change the laws of gravity on large scales as an alternative to the dark matter hypothesis.

This shocking discovery drew some criticism when the team first announced their results in March of 2018.

"It was a little stressful at times," said van Dokkum. "On one hand, this is how the scientific process is supposed to work; you see something interesting, other people disagree, you obtain new data, and in the end you learn more about the universe. On the other hand, although the majority of the critiques were constructive and polite, not all of them were. Every time a new critique came out we had to scramble and figure out if we had missed something."

Van Dokkum says he's proud of his team for pulling together in those tough moments. Their hard work has paid off, with the universe cooperating and giving more reason to look for other UDGs like DF2 and DF4.

Danieli is leading a wide area survey with the Dragonfly Telephoto Array (DTA) to look for more examples in a systematic way, then observe candidates again using the Keck telescopes.

"We hope to next find out how common these galaxies are and whether they exist in other areas of the universe," said Danieli. "We want to find more evidence that will help us understand how the properties of these galaxies work with our current theories. Our hope is that this will take us one step further in understanding one of the biggest mysteries in our universe - the nature of dark matter."

Research Report: "Still Missing Dark Matter: KCWI High-Resolution Stellar Kinematics of NGC1052-DF2," and 0"A Second Galaxy Missing Dark Matter in the NGC 1052 Group,"


Related Links
Keck Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
"Space Butterfly" Is Home to Hundreds of Baby Stars
Pasadena CA (JPL) Apr 01, 2019
What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA's Spitzer Space Telescope. Officially named Westerhout 40 (W40), the butterfly is a nebula - a giant cloud of gas and dust in space where new stars may form. The butterfly's two "wings" are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region. Besides being beautiful, W40 exemplifies how the formation of stars results i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
A decade-long quest to build an ecosystem in a room

Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

NASA selects two new space tech research institutes for smart habitats

STELLAR CHEMISTRY
Russia Maintains High Quality of RD-180 Rocket Engines - ULA

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

STELLAR CHEMISTRY
ExoMars carrier module prepares for final pre-launch testing

Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

STELLAR CHEMISTRY
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

STELLAR CHEMISTRY
Preserving heritage data at ESA

Forging the future

Spacecraft Repo Operations

Amazon working on internet-serving satellite network

STELLAR CHEMISTRY
Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

ESA oversees teaching of Europe's next top solderers

Russia's new ISS modules will be shielded with fabrics used in body armour

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms

STELLAR CHEMISTRY
NASA researchers catalogue all microbes and fungi on ISS

Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

STELLAR CHEMISTRY
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.