. 24/7 Space News .
STELLAR CHEMISTRY
Gaia spots a 'ghost' galaxy next door
by Staff Writers
Cambridge UK (SPX) Nov 14, 2018

What Antlia 2 would look like if you could see it, for example from Chile.

The Gaia satellite has spotted an enormous 'ghost' galaxy lurking on the outskirts of the Milky Way.

An international team of astronomers, including from the University of Cambridge, discovered the massive object when trawling through data from the European Space Agency's Gaia satellite. The object, named Antlia 2 (or Ant 2), has avoided detection until now thanks to its extremely low density as well as a perfectly chosen hiding place, behind the shroud of the Milky Way's disc. The researchers have published their results online today.

Ant 2 is known as a dwarf galaxy. As structures emerged in the early universe, dwarfs were the first galaxies to form, and so most of their stars are old, low-mass and metal-poor. But compared to the other known dwarf satellites of our galaxy, Ant 2 is immense: it is as big as the Large Magellanic Cloud (LMC), and a third the size of the Milky Way itself.

What makes Ant 2 even more unusual is how little light it gives out. Compared to the LMC, another satellite of the Milky Way, Ant 2 is 10,000 times fainter. In other words, it is either far too large for its luminosity or far too dim for its size.

"This is a ghost of a galaxy," said Gabriel Torrealba, the paper's lead author. "Objects as diffuse as Ant 2 have simply not been seen before. Our discovery was only possible thanks to the quality of the Gaia data."

The ESA's Gaia mission has produced the richest star catalogue to date, including high-precision measurements of nearly 1.7 billion stars and revealing previously unseen details of our home galaxy. Earlier this year, Gaia's second data release made new details of stars in the Milky Way available to scientists worldwide.

The researchers behind the current study - from Taiwan, the UK, the US, Australia and Germany - searched the new Gaia data for Milky Way satellites by using RR Lyrae stars. These stars are old and metal-poor, typical of those found in a dwarf galaxy. RR Lyrae change their brightness with a period of half a day, and can be located thanks to these well-defined pulses.

"RR Lyrae had been found in every known dwarf satellite, so when we found a group of them sitting above the galactic disc, we weren't totally surprised," said co-author Vasily Belokurov from Cambridge's Institute of Astronomy. "But when we looked closer at their location on the sky it turned out we found something new, as no previously identified object came up in any of the databases we searched through."

The team contacted colleagues at the Anglo-Australian Telescope (AAT) in Australia, but when they checked the coordinates for Ant 2, they realised they had a limited window of opportunity to get follow-up data. They were able to measure the spectra of more than 100 red giant stars just before the Earth's motion around the Sun rendered Ant 2 unobservable for months.

The spectra enabled the team to confirm that the ghostly object they spotted was real: all the stars were moving together. Ant 2 never comes too close to the Milky Way, always staying at least 40 kiloparsecs (about 130,000 light-years) away. The researchers were also able to obtain the galaxy's mass, which was much lower than expected for an object of its size.

"The simplest explanation of why Ant 2 appears to have so little mass today is that it is being taken apart by the galactic tides of the Milky Way," said co-author Sergey Koposov from Carnegie Mellon University. "What remains unexplained, however, is the object's giant size. Normally, as galaxies lose mass to the Milky Way's tides, they shrink, not grow."

If it is impossible to puff the dwarf up by removing matter from it, then Ant 2 had to have been born huge. The team has yet to figure out the exact process that made Ant 2 so extended. While objects of this size and luminosity have not been predicted by current models of galaxy formation, recently it has been speculated that some dwarfs could be inflated by vigorous star formation. Stellar winds and supernova explosions would push away the unused gas, weakening the gravity that binds the galaxy and allowing the dark matter to drift outward as well.

"Even if star formation could re-shape the dark matter distribution in Ant 2 as it was put together, it must have acted with unprecedented efficiency," said co-author Jason Sanders, also from Cambridge.

Alternatively, Ant 2's low density could mean that a modification to the dark matter properties is needed. The currently favoured theory predicts dark matter to pack tightly in the centres of galaxies. Given how fluffy the new dwarf appears to be, a dark matter particle which is less keen to cluster may be required.

"Compared to the rest of the 60 or so Milky Way satellites, Ant 2 is an oddball," said co-author Matthew Walker, also from Carnegie Mellon University. "We are wondering whether this galaxy is just the tip of an iceberg, and the Milky Way is surrounded by a large population of nearly invisible dwarfs similar to this one."

The gap between Ant 2 and the rest of the galactic dwarfs is so wide that this may well be an indication that some important physics is missing in the models of dwarf galaxy formation. Solving the Ant 2 puzzle may help researchers understand how the first structures in the early universe emerged. Finding more objects like Ant 2 will show just how common such ghostly galaxies are, and the team is busy looking for other similar galaxies in the Gaia data.

Research Report: "The Hidden Giant: Discovery of an Enormous Galactic Dwarf Satellite in Gaia DR2," G. Torrealba et al., 2018, submitted to Monthly Notices of the Royal Astronomical Society


Related Links
University Of Cambridge
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Astronomers discover the giant that shaped the early days of our Milky Way
Groningen, Netherlands (SPX) Nov 01, 2018
Some ten billion years ago, the Milky Way merged with a large galaxy. The stars from this partner, named Gaia-Enceladus, make up most of the Milky Way's halo and also shaped its thick disk, giving it its inflated form. A description of this mega-merger, discovered by an international team led by University of Groningen astronomer Amina Helmi, is now published in the scientific journal Nature. Large galaxies like our Milky Way are the result of mergers of smaller galaxies. An outstanding question i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
From Quantum Optics to Increased Risk Posture: Student Innovations at NASA

Computer on Russian segment of ISS rebooted after glitch

Canadian voice of Hal in '2001: A Space Odyssey' dies

Cosmonauts to perform spacewalk to examine hole in Soyuz hull on December 11

STELLAR CHEMISTRY
First Angara A5V Heavy-Class Rocket Launch to Take Place in 2026 - Roscosmos

Rocket Lab reaches orbit again, deploys more satellites

Fleet Space Technologies' first satellites launched by Rocket Lab

DARPA, Army select companies to develop hypersonic missile propulsion

STELLAR CHEMISTRY
Oxia Planum favoured for ExoMars surface mission

Scientists capture the sound of sunrise on Mars

Landing site selected for UK's ExoMars rover in 2021

How to drive a robot on Mars

STELLAR CHEMISTRY
China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

STELLAR CHEMISTRY
ESA's 25 years of telecom: the beginning

Market for 3,300 satellites worth $284 Billion over next decade

Telstar 18 VANTAGE satellite now operational over Asia Pacific

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

STELLAR CHEMISTRY
Thermal testing of the magnetometer boom

Flying focus: Controlling lasers through time and space

A two-atom quantum duet

Flow units: Dynamic defects in metallic glasses

STELLAR CHEMISTRY
Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers

Laboratory experiments probe the formation of stars and planets

NASA retires Kepler Space Telescope, passes planet-hunting torch

Rocky and habitable - sizing up a galaxy of planets

STELLAR CHEMISTRY
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.