. | . |
Gaia reveals how Sun-like stars turn solid after their demise by Staff Writers Paris (ESA) Jan 10, 2019
Data captured by ESA's galaxy-mapping spacecraft Gaia has revealed for the first time how white dwarfs, the dead remnants of stars like our Sun, turn into solid spheres as the hot gas inside them cools down. This process of solidification, or crystallisation, of the material inside white dwarfs was predicted 50 years ago but it wasn't until the arrival of Gaia that astronomers were able to observe enough of these objects with such a precision to see the pattern revealing this process. "Previously, we had distances for only a few hundreds of white dwarfs and many of them were in clusters, where they all have the same age," says Pier-Emmanuel Tremblay from the University of Warwick, UK, lead author of the paper describing the results, published in Nature. "With Gaia we now have the distance, brightness and colour of hundreds of thousands of white dwarfs for a sizeable sample in the outer disc of the Milky Way, spanning a range of initial masses and all kinds of ages." It is in the precise estimate of the distance to these stars that Gaia makes a breakthrough, allowing astronomers to gauge their true brightness with unprecedented accuracy. White dwarfs are the remains of medium-sized stars similar to our Sun. Once these stars have burnt all the nuclear fuel in their core, they shed their outer layers, leaving behind a hot core that starts cooling down. These ultra-dense remnants still emit thermal radiation as they cool, and are visible to astronomers as rather faint objects. It is estimated that up to 97 per cent of stars in the Milky Way will eventually turn into white dwarfs, while the most massive of stars will end up as neutron stars or black holes. The cooling of white dwarfs lasts billions of years. Once they reach a certain temperature, the originally hot matter inside the star's core starts crystallising, becoming solid. The process is similar to liquid water turning into ice on Earth at zero degrees Celsius, except that the temperature at which this solidification happens in white dwarfs is extremely high - about 10 million degrees Celsius. In this study, the astronomers analysed more than 15 000 stellar remnant candidates within 300 light years of Earth as observed by Gaia and were able to see these crystallising white dwarfs as a rather distinct group. "We saw a pile-up of white dwarfs of certain colours and luminosities that were otherwise not linked together in terms of their evolution," says Pier-Emmanuel. "We realised that this was not a distinct population of white dwarfs, but the effect of the cooling and crystallisation predicted 50 years ago." The heat released during this crystallisation process, which lasts several billion years, seemingly slows down the evolution of the white dwarfs: the dead stars stop dimming and, as a result, appear up to two billion years younger than they actually are. That, in turn, has an impact on our understanding of the stellar groupings these white dwarfs are a part of. "White dwarfs are traditionally used for age-dating of stellar populations such as clusters of stars, the outer disc, and the halo in our Milky Way," explains Pier-Emmanuel. "We will now have to develop better crystallisation models to get more accurate estimates of the ages of these systems." Not all white dwarfs crystallise at the same pace. More massive stars cool down more rapidly and will reach the temperature at which crystallisation happens in about one billion years. White dwarfs with lower masses, closer to the expected end stage of the Sun, cool in a slower fashion, requiring up to six billion years to turn into dead solid spheres. The Sun still has about five billion years before it becomes a white dwarf, and the astronomers estimate that it will take another five billion years after that to eventually cool down to a crystal sphere. "This result highlights the versatility of Gaia and its numerous applications," says Timo Prusti, Gaia project scientist at ESA. "It's exciting how scanning stars across the sky and measuring their properties can lead to evidence of plasma phenomena in matter so dense that cannot be tested in the laboratory."
Research Report: "Core crystallisation in evolving white dwarf stars from a pile up in the cooling sequence" by P.-E. Tremblay et al is published in Nature.
Lifting the veil on star formation in the Orion Nebula Moffett Field CA (SPX) Jan 08, 2019 The stellar wind from a newborn star in the Orion Nebula is preventing more new stars from forming nearby, according to new research using NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA), whose science operations are managed by the Universities Space Research Association. This is surprising because until now, scientists thought that other processes, such as exploding stars called supernovae, were largely responsible for regulating the formation of stars. But SOFIA's observations su ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |