. | . |
GBT upgrade to sharpen telescope's vision by Staff Writers Green Bank WV (SPX) Sep 21, 2018
The National Science Foundation (NSF) has awarded more than $1.3 million to upgrade its Green Bank Telescope (GBT) in West Virginia with an innovative precision laser ranging measurement system. This upgrade will allow the telescope to observe celestial objects, day or night, at radio wavelengths as small as 3 millimeters. This new capability is essential for studying the chemistry and composition of galaxies, stars, and the dense clouds in the regions near the center of our galaxy. The GBT is the world's largest fully steerable telescope and the largest single-dish telescope capable of millimeter-wavelength observations. Currently, these high-frequency observations can only be made at night, a limitation radio telescopes normally do not face. Daytime solar heating of the telescope, however, adds just enough distortion to the dish to make high-frequency, 3-millimeter observing impractical. The GBT's planned upgrade will overcome this obstacle by providing real-time precision measurements of the dish, giving the telescope's control systems the data they need to correct for these distortions, even while the telescope is observing. This daytime capability is essential to study the central regions of our galaxy. In winter, when the atmosphere is most cooperative to high-frequency observing, the center of the Milky Way is visible only in the daytime from Green Bank. The newly developed laser ranging system will work [with] the telescope's existing surface-correction system, which controls the dish's more than 2000 individual panels and mechanically compensates for any deviations from a defined perfect shape for observing. "While the GBT's existing systems work well at night, it can be very difficult to make high-precision adjustments during daylight hours, when sunlight falling on different parts of the dish causes temperature changes and unpredictable distortions that cannot currently be measured," said Jay Lockman, an astronomer at the Green Bank Observatory and principal investigator on the new laser metrology system. These distortions limit use of the GBT at its highest operating frequencies, where tolerances on surface accuracy are the tightest. The current project will implement a laser ranging measurement system, precisely correcting the GBT's focus both day and night. This will increase the available usable time of the telescope at its highest operating frequencies by as much as 1,000 hours every year, with a corresponding increase in the scientific output. A similar system was already tested on the telescope, providing proof-of-concept that the upgrade will perform as expected. Much of the upgrade of the GBT will focus on the software needed to interpret the data from the laser system so the existing actuators can maintain the shape of the dish with the precision necessary for daytime millimeter observations. "This upgrade will also enable the GBT to work in concert with other millimeter-wavelength telescopes, opening up new observing capabilities for the national and international astronomical community," said Lockman. Testing for the new system is expected to begin in about two years and it should be fully deployed in three years.
Success in Critical Communications Tests for NASA's James Webb Space Telescope Baltimore MD (SPX) Sep 07, 2018 When NASA's James Webb Space Telescope launches in 2021, it will write a new chapter in cosmic history. This premier space science observatory will seek the first stars and galaxies, explore distant planets around other stars, and solve mysteries of own solar system. Webb will be controlled from the Mission Operations Center (MOC) at the Space Telescope Science Institute in Baltimore, Maryland. To prepare for launch, the flight operations team recently conducted two successful communications tests ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |