. | . |
Future information technologies: Magnetic monopoles by Staff Writers Berlin, Germany (SPX) Oct 31, 2016
The new materials system consists of regular arrays of superconducting YBaCuO-dots covered with an extremely thin permalloy film. A shortly applied external magnetic field leads to the creation of supercurrents within the superconducting dots. These currents produce a complex magnetic field pattern, which is inscribed into the permalloy film above. The results are published in Advanced Science. Magnetic patterns such as monopoles or skyrmions (stable vortices) are promising options for fast and energy efficient data storage. However obtaining and manipulating such magnetic structures is not easy. Now, Dr. Sergio Valencia and his colleagues at HZB, in collaboration with the materials science institute of Barcelona, have discovered an interesting new materials system which could do the trick. The samples consisted of regular arrays of superconducting YBaCuO-dots, approximately 20 micrometer in diameter and coming in different geometries. Valencia and his team covered these microstructures with an extremely thin film of ferromagnetic iron-nickel-alloy, a so called permalloy.
Complex magnetic patterns This external field, not enough to reorient the magnetic domains of permalloy, lead to the creation of a so-called supercurrent within the superconducting dots. Such superconducting currents do persist even after the removal of the external magnetic field and produce themselves a complex magnetic field pattern.
Mapping at BESSY II
Monopoles and skyrmions "I am quite optimistic that it is possible to miniaturise such patterns to facilitate their implementation in magnetic memories, for example. What is more, we even have some ideas on how to stabilise such magnetic structures at room temperature", Valencia says. Research paper: "Encoding Magnetic States in Monopole-Like Configurations Using Superconducting Dots" is published in Advanced Science, Open Access.
Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |