Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Future Looks Bright For Interferometry
by Staff Writers
Paris, France (ESA) Sep 23, 2008


The ESO Very Large Telescope Interferometer (VLTI).

The PRIMA instrument (1) of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility.

PRIMA will be a unique tool for the detection of exoplanets.

"PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass."

PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit (2). In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI.

Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres.

The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers.

Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility-class instrument of its kind that is open to all astronomers.

PRIMA parts arrived at the summit at Paranal at the end of July and were integrated and tested during the following month. On 2 September 2008, as a first milestone, starlight from two VLTI 1.8-m Auxiliary Telescopes was fed into the PRIMA system, and interference fringes were detected on PRIMA's Fringe Sensor Unit.

Three days later the system was routinely using active tracking on the fringes, compensating for atmospheric turbulence.

First light - or, in the case of interferometric instruments, first fringes - actually occurred ahead of the ambitious schedule set out by lead engineer Francoise Delplancke: "There were many activities that all had to be successful simultaneously for this to happen, but the assembly, integration, and verification went smoothly - I was pleased by how easy and reliable the fringe tracking was, for our first try."

All PRIMA sub-systems (3) have been installed successfully for use with two Auxiliary Telescopes and will now be submitted to intensive commissioning tests before being offered to the community of users for routine observations (4).

(1): PRIMA stands for "Phase Referenced Imaging and Microarcsecond Astrometry". AMBER and MIDI are two instruments of the VLTI.

(2): When a planet orbits a star, its gravity effectively pulls the star, making it "wobble". This wobbling is generally measured by looking at the variations of the radial velocity of a star, but if precise enough measurements of the position of the star can be made, it should be possible to see this wobble directly. PRIMA should be precise enough to make these measurements for Jupiter-like planets. PRIMA will be able to measure angular differences of about ten micro-arcseconds - the angle that human hair grows within one second, as seen from 100 metres afar.

(3): The PRIMA facility uses a number of components along the VLTI pipeline, including Star Separators (STSs) for the telescopes, Differential Delay Lines (DDLs), laser Metrology and two Fringe Sensor Units (FSUs). The Star Separators collect the light from two distinct stars to be sent through the interferometer. The DDLs, built by a consortium (Geneva Observatory, MPIA Heidelberg and Landessternwarte Heidelberg) compensate for slight differences in path lengths due to the separate positions on the sky of the two sources. Each Fringe Sensor Unit recombines light from both telescopes for the two sources separately to form interferometric fringes. The Metrology system ties everything together at the 1-nm level by sending light back through the system from the FSUs to the STSs and back again.

(4): Four commissioning runs are scheduled for PRIMA over the next six months and will concentrate on testing and characterising the fringe tracking on a single star. Observations of two distinct stars will begin next year and will extend these tests to the dual-star mode. These tests will also result in PRIMA's first astrometric measurements. Soon afterwards PRIMA will begin serious operations in planet-finding surveys.

The PRIMA project is a joint effort led by ESO and includes contributions from Geneva Observatory, MPIA Heidelberg, Landessternwarte Heidelberg, Leiden University, Ecole Polytechnique Federale de Lausanne, Institute of Microtechnology of Neuchatel and MPE Garching; industrial partners on the PRIMA project include TNO and Thales Alenia Space.

.


Related Links
ESO
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
GD Completes On-Orbit Checkout Of Fermi Gamma-ray Space Telescope
Fairfax VA (SPX) Sep 18, 2008
General Dynamics Advanced Information Systems has successfully completed the Launch and Early Orbit Phase (LEOP) of NASA's Fermi Gamma-ray Space Telescope. Fermi, previously known as the Gamma-ray Large Area Space Telescope or GLAST, is a next-generation high-energy gamma-ray satellite designed to make observations of celestial gamma-ray sources. NASA recently renamed the satellite in ... read more


SPACE SCOPES
Science By The Light Of The Moon

Chang'e-1 Sends Back Verbal Wishes

Russian Water Detector To Ride Piggyback On U.S. Lunar Orbiter

Robot Scout Will Test New Lunar Landing Techniques For Future Explorers

SPACE SCOPES
Growing Library Of Mars Spectrometer Images

Mars Polar Cap Mystery Solved

Spirit On Light Duties For Now

NASA's Phoenix Lander Might Peek Under A Rock

SPACE SCOPES
Shenzhou Astronauts Arrive At Launch Center

Johnson space center to reopen next week: NASA

Building A New Rocket For The Nation

Actel Launches Flash-Based FPGAs Into Space

SPACE SCOPES
Shenzhou 7 Is Not A Space Station

China's Latest Space Mission Finishes Rehearsal

China's Shenzhou-7 In Final Preparation For Launch

Opening The Window For Shenzhou 7

SPACE SCOPES
The US Has No Option But To Use Russia's Soyuz Craft

Resupply spacecraft docks with International Space Station

Hurricane Ike's impact felt at International Space Station: NASA

Russia To Launch Progress M-65 Space Freighter To ISS

SPACE SCOPES
ArianeSpace Buys 10 Soyuz Rockets For Kourou Spaceport

Telesat Launches Nimiq 4 Broadcast Satellite

Orbital Completes Minotaur IV Launch Vehicle Pathfinder Operations

Proton Launch Of Nimiq 4 Satellite Postponed

SPACE SCOPES
TNO Star Separators Help ESO With Detection Of Exoplanets

First Picture Of Likely Planet Around Sun-Like Star

VLT Instrument Hints At The Presence Of Planets In Young Gas Discs

NASA Carl Sagan Fellows To Study Extraterrestrial Worlds

SPACE SCOPES
LockMart Demos New Radiator Tech For TSAT Program

NASA Uses Commercial Microgravity Flight Services For First Time

Australian company launches 3D Internet tool

Objectivity Database Used To Build Comprehensive Space Object Catalog




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement