. | . |
From atoms to planets, the longest-running Space Station experiment by Staff Writers Paris (ESA) Jul 05, 2021
As Europe celebrates 20 years of ESA astronauts on the International Space Station, a Russian-European experiment has been running quietly in the weightless research centre for just as long: the Plasma Kristall (PK) suite of investigations into fundamental science. Plasma Kristall takes a plasma and injects fine dust particles in weightlessness, turning the dust into highly charged particles that interact with each other, bouncing off each other as their charge causes the particles to attract or repel. Under the right conditions, the dust particles can arrange themselves over time to form organised structures, or plasma crystals. These interactions and forming of three-dimensional structures resemble the workings of our world on the atomic scale, a world so small that we cannot see move even with an electron microscope. Add a laser to the mix and the dust particles can be seen and recorded for observation by scientists on Earth for a sneak peak of the world beyond our eyes. These surrogate atoms are a way for researchers to simulate how materials form on an atomic scale, and to test and visualise theories. The experiment cannot be run on Earth because gravity only makes sagging, flattened recreations possible; if you want to see how a crystal is constituted you need to remove the force pulling downwards - gravity. On 3 March 2001, "PK-3 Plus" was turned on in the Zvezda module, the first physical experiment to run on the Space Station. Led by the German aerospace centre DLR and Russian space agency Roscosmos the experiment was a success and later followed up by a fourth version, installed in 2014 in ESA's Columbus laboratory, this time as an ESA-Roscosmos collaboration.
Planet conceptions Using PK-4, researchers across the world can follow how an object melts, how waves spread in fluids and how currents change at the atomic level. Around 100 papers have been published based on the Plasma Kristall experiments and the knowledge gained is helping understand how planets form too. At its origin our planet Earth was probably two dust particles that met in space and grew and grew into our world. PK-4 can model these origin moments as they are during the conception of planets. The huge amount of data that PK-4 creates is so vast it cannot be downloaded through the Space Station's communication network, so hard disks are physically shipped to space and back with terabytes of information. The experiment is run from Toulouse, France, at the CNES space agency operating centre Cadmos. Astrid Orr, ESA's physical sciences coordinator notes "PK-4 is a great example of fundamental science done on the Space Station; through international collaboration and long-term investment we are learning more about the world around us, on the minute scale as well as on the cosmic scale. The knowledge from the PK experiments can be directly applied to research on fusion physics - where dust needs to be removed - and the processing of electronic chips, for example in plasma processes in the semiconductor and solar cell industry. In addition, the miniaturisation of the technology required when developing Plasma Kristal is already being applied in plasma-based medical equipment for hospitals. "The PK experiments address a large range of physical phenomena, so ground-breaking discoveries can happen at any moment."
Theoretical proof that a strong force can create light-weight subatomic particles Tokyo, Japan (SPX) Jun 25, 2021 Using only a pen and paper, a theoretical physicist has proved a decades-old claim that a strong force called Quantum Chromo Dynamics (QCD) leads to light-weight pions, reports a new study published on June 23 in Physical Review Letters. The strong force is responsible for many things in our Universe, from making the Sun shine, to keeping quarks inside protons. This is important because it makes sure that the protons and neutrons bind to form nuclei of every atom that exists. But there is st ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |