. 24/7 Space News .
Frictionless Motion Observed In Water

There's a fraction of no friction.
by Staff Writers
Los Angeles CA (SPX) Mar 31, 2006
Researchers at the University of Southern California and Brown University say they have achieved near-frictionless motion in water by using lasers to spin a molecule like a propeller. Free rotation can occur in gases, where molecules are far apart.

This is the first known demonstration of friction turning off in a room temperature liquid, the authors report in the Mar. 31 issue of Science.

Graduate student Amy Moskun and her advisor Stephen Bradforth, associate professor of chemistry in the USC College of Letters, Arts and Sciences, used ultra-short, high-energy laser pulses to spin a CN "diatomic" -- a simple molecular stick with a carbon at one end and a nitrogen at the other.

Within the first quarter-turn the molecular stick creates a shock wave, throwing back the water molecules that had been crowding it.

"If you give it enough spin, it pushes all the guys around it away," said Bradforth, "and it builds itself a little bubble. It's destroyed the friction in the liquid around it by completely reshaping its environment."

Bradforth likened the phenomenon to a passenger swinging a suitcase around in a crowded airport terminal, minus the real-life bruises and hurt feelings.

As with the airport analogy, after some time � about 10 complete rotations of the CN molecule � the shock dissipates and the water molecules rush back in.

Even so, said Bradforth, the length of friction-free spinning was far greater than expected.

"Everyone's prediction was that it wouldn't even complete a few degrees of free rotation," he said.

The discovery has no immediate practical use, but since 90 percent of reactions take place in liquid solutions, Bradforth said his group's study "impacts how we think about the vast majority of chemical reactions."

In chemistry, friction is a useful phenomenon that transfers energy between molecules and allows reactions to proceed. But what if a reaction needs to be stopped or delayed? Chemists have long sought to manipulate reactions, which usually yield useless byproducts along with the desired compound.

The Science paper provides a potential new tool, since one way to influence the progress of a reaction is to isolate a molecule from its surroundings.

"Most people thought this was hopeless in a liquid," Bradforth said.

It took the researchers more than a year to grasp the significance of their work. After Moskun and Bradforth figured out how to spin up CN molecules and to observe the rotation with a strobe-like apparatus, they sent their data to Richard Stratt, professor of chemistry at Brown University.

Stratt's group of theoretical chemists showed that the data represents a violation of linear response theory, a key model for liquid behavior that states the effects of friction and molecular energy are scalable. Under the theory, the rapidly spinning CN diatomic should not have caused a fundamental change in its environment.

"People have seen linear response theory fail in simulations before," Stratt wrote in a summary for the researchers' funding agency, the National Science Foundation. "I believe these studies represent the first time anyone has ever seen that a particular, well-defined, molecular event was responsible for suddenly turning off a liquid's linear response behavior."

The USC group then verified their collaborators' interpretation with a new round of experiments.

Said Bradforth: "The theory fails in this case, and we can see why it fails."

The theory's failure may be chemistry's gain.

Bradforth and Stratt were co-authors on the Science paper, along with graduate students Moskun and Askat Jailaubekov from USC, and Guohua Tao from Brown.

Related Links
University of Southern California
Brown University



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


10000 Evacuated As Czech Rivers Rise
Prague (AFP) Mar 30, 2006
Some 10 000 residents were evacuated overnight from the town of Znojmo in southeastern Czech Republic amid rising river waters levels, a local official said early Thursday. The situation will "probably be worse than the floods which hit the Znojmo region in 2002," said south Moravia regional council head Stanislav Juranek.







  • Space Adventures Chooses Singaporean Venue And Russian Vehicle Producer
  • NASA Extends CEV Contracts
  • Headdown Bedrest Precisely Mimics Human Physiology In Spaceflight
  • BAE Systems Radiation Hardened Computers Help NASA Success

  • NASA Selects Teachers To Aid In Mars Phoenix Mission
  • Lockheed Martin To Design Mars Science Lab Aeroshell
  • ESA Invites Designs For Mars UAV
  • Mars Rover Team Investigating Spirit's Front Wheel

  • Next Ariane 5 Launch Taking Shape
  • ATK Rocket Motors Power Successful Launch of Pegasus XL
  • NASA Is 'Three For Three' In Successful ST5 Launch
  • Washington Touts US-Russian Satellite Launch Cooperation

  • Envisat Makes Direct Measurements Of Ocean Surface Velocities
  • NASA Scientist Claims Warmer Ocean Waters Reducing Ice Worldwide
  • Space Tool Aids Fight For Clean Drinking Water
  • FluWrap: Deadly Strain Divides

  • "Zero G and I Feel Fine"
  • To Pluto And Beyond
  • New Horizons Update: 'Boulder' and 'Baltimore'
  • New Horizons Set For A Comfortable Cruise Out To Jupiter And Pluto Transfer

  • Improved Instruments For Analysis Of Samples From Outer Space
  • Neutron Star Collisions Produce Super-Powerful Magnetic Fields
  • Swift Observes An Unusual Bang In The Far Universe
  • The Eye Of God Returns

  • SMART-1 Tracks Crater Lichtenberg And Young Lunar Basalts
  • Quantum Technique Can Foil Hackers
  • Noah's Ark On The Moon
  • X PRIZE Foundation And The $2M Lunar Lander Challenge

  • New York School Districts Install GPS Tracking Systems in Buses
  • Glonass System To Open For Russian Consumers In 2007
  • TomTom Unveils a Range of New and Updated Content And Services
  • RFID-Based Asset Management With Innovative Sensory Technology

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement