. 24/7 Space News .
TECH SPACE
Freshly printed magnets using Metal 3D laser printing
by Staff Writers
Dubendorf, Switzerland (SPX) Jun 15, 2020

Precisely Magnetized: Iron filings stick to this mini chessboard with four millimeter edge length. The partially magnetic structure was produces from a single type of steel power at different temperatures.

It looks quite inconspicuous to the casual beholder, hardly like groundbreaking innovation: a small metallic chessboard, four millimeters long on either side. At first glance, it shines like polished steel; at second glance, minute differences in color are visible: The tiny chessboard has 16 squares, eight appear slightly darker, the other eight a bit lighter.

The unassuming material sample goes to show that 3D printing with the help of laser beams and metal powder is not only suitable for creating new geometric shapes, but also for producing new materials with completely new functionalities. The small chessboard is a particularly obvious example: Eight squares are magnetic, eight non-magnetic - the entire piece has been 3D-printed from a single grade of metal powder. Only the power and duration of the laser beam varied.

As a starting point, an Empa team led by Aryan Arabi-Hashemi and Christian Leinenbach used a special type of stainless steel, which was developed some 20 years ago by the company Hempel Special Metals in Dubendorf, among others. The so-called P2000 steel does not contain nickel, but around one percent of nitrogen.

P2000-steel does not cause allergies and is well suited for medical applications. It is particularly hard, which makes conventional milling more difficult. Unfortunately, at first glance it also seems unsuitable as a base material for 3D laser printing: In the melting zone of the laser beam, the temperature quickly peaks. This is why a large part of the nitrogen within the metal normally evaporates, and the P2000 steel changes its properties.

Turning a problem into an advantage
Arabi-Hashemi and Leinenbach managed to turn this drawback into an advantage. They modified the scanning speed of the laser and the intensity of the laser beam, which melts the particles in the metal powder bed, and thus varied the size and lifetime of the liquid melt pool in a specified manner. In the smallest case, the pool was 200 microns in diameter and 50 microns deep, in the largest case 350 microns wide and 200 microns deep.

The larger melt pool allows much more nitrogen to evaporate from the alloy; the solidifying steel crystallizes with a high proportion of magnetizable ferrite. In the case of the smallest melt pool, the melted steel solidifies much faster. The nitrogen remains in the alloy; the steel crystallizes mainly in the form of non-magnetic austenite.

During the experiment, the researchers had to determine the nitrogen content in tiny, millimeter-sized metal samples very precisely and measure the local magnetization to within a few micrometers, as well as the volume ratio of austenitic and ferritic steel. A number of highly developed analytical methods available at Empa were used for this purpose.

Shape Memory Alloys become smart
The experiment, which seems like a mere gimmick, could soon add a crucial tool to the methodology of metal production and processing. "In 3D laser printing, we can easily reach temperatures of more than 2500 degrees Celsius locally," says Leinenbach. "This allows us to vaporize various components of an alloy in a targeted manner - e.g. manganese, alumnium, zinc, carbon and many more - and thus locally change the chemical composition of the alloy." The method is not limited to stainless steels, but can also be useful for many other alloys.

Leinenbach thinks about, for instance, certain nickel-titanium alloys known as shape memory alloys. At what temperature the alloy "remembers" its programmed shape depends on just 0.1 percent more or less nickel in the mixture. Using a 3D laser printer, structural components could be manufactured that react locally and in a staggered manner to different temperatures.

Fine structures for the electric motor of the future
The ability to produce different alloy compositions with micrometer precision in a single component could also be helpful in the design of more efficient electric motors. For the first time, it is now possible to build the stator and the rotor of the electric motor from magnetically finely structured materials and thus make better use of the geometry of the magnetic fields.

The crucial factor in the discovery of the relationship between laser power, the size of the melt pool and the material's properties was the expertise in the field of Additive Manufacturing, which has been built up at Empa over the last nine years.

Ever since then, Christian Leinenbach and his team, as one of the world's leading research groups in the field, have devoted themselves to materials science issues related to 3D laser printing processes. At the same time, Empa researchers have gained experience in process monitoring, especially in measuring the melt pools, whose size and lifetime are crucial for the targeted modification of alloys.

Research paper


Related Links
Swiss Federal Laboratories For Materials Science And Technology (EMPA)
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Using sound and light to generate ultra-fast data transfer
Leeds UK (SPX) Feb 12, 2020
Researchers have made a breakthrough in the control of terahertz quantum cascade lasers, which could lead to the transmission of data at the rate of 100 gigabits per second - around one thousand times quicker than a fast Ethernet operating at 100 megabits a second. What distinguishes terahertz quantum cascade lasers from other lasers is the fact that they emit light in the terahertz range of the electromagnetic spectrum. They have applications in the field of spectroscopy where they are used in ch ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Airbnb sees 'bounce' in travel, aims to promote local tourism

ARISS established dedicated US Organization to support amateur ISS communications

From space, Russian cosmonauts fight chess grandmaster to a draw

CES global gadget fest on track despite pandemic

TECH SPACE
New Zealand rocket launch postponed due to wind gusts

Agency seeks hypersonic missile defense system proposals

China plans to develop new solid-fueled carrier rocket

ULA on track to launch new Vulcan rocket in early 2021

TECH SPACE
Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

Martian moon orbit hints at ancient ring

TECH SPACE
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

TECH SPACE
York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

Momentus and OrbAstro announce service agreement for 3U in-orbit demonstration

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

TECH SPACE
A breakthrough in developing multi-watt terahertz lasers

Freshly printed magnets using Metal 3D laser printing

Lab makes 4D printing more practical

Could we run out of sand? Scientists adjust how grains are measured

TECH SPACE
Presence of airborne dust could signify increased habitability of distant planets

Ancient asteroid impacts created the ingredients of life on Earth and Mars

Mirror image of Earth and Sun

New experiments show complex astrochemistry on thin ice covering dust grains

TECH SPACE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.