![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Dec 19, 2018
Scientists have described a fossil plant species that suggests flowers bloomed in the Early Jurassic, more than 174 million years ago, according to new research in the open-access journal eLife. Before now, angiosperms (flowering plants) were thought to have a history of no more than 130 million years. The discovery of the novel flower species, which the study authors named Nanjinganthus dendrostyla, throws widely accepted theories of plant evolution into question, by suggesting that they existed around 50 million years earlier. Nanjinganthus also has a variety of 'unexpected' characteristics according to almost all of these theories. Angiosperms are an important member of the plant kingdom, and their origin has been the topic of long-standing debate among evolutionary biologists. Many previously thought angiosperms could be no more than 130 million years old. However, molecular clocks have indicated that they must be older than this. Until now, there has been no convincing fossil-based evidence to prove that they existed further back in time. "Researchers were not certain where and how flowers came into existence because it seems that many flowers just popped up in the Cretaceous from nowhere," explains lead author Qiang Fu, Associate Research Professor at the Nanjing Institute of Geology and Paleontology, China. "Studying fossil flowers, especially those from earlier geologic periods, is the only reliable way to get an answer to these questions." The team studied 264 specimens of 198 individual flowers preserved on 34 rock slabs from the South Xiangshan Formation - an outcrop of rocks in the Nanjing region of China renowned for bearing fossils from the Early Jurassic epoch. The abundance of fossil samples used in the study allowed the researchers to dissect some of them and study them with sophisticated microscopy, providing high-resolution pictures of the flowers from different angles and magnifications. They then used this detailed information about the shape and structure of the different fossil flowers to reconstruct the features of Nanjinganthus dendrostyla. The key feature of an angiosperm is 'angio-ovuly' - the presence of fully enclosed ovules, which are precursors of seeds before pollination. In the current study, the reconstructed flower was found to have a cup-form receptacle and ovarian roof that together enclose the ovules/seeds. This was a crucial discovery, because the presence of this feature confirmed the flower's status as an angiosperm. Although there have been reports of angiosperms from the Middle-Late Jurassic epochs in northeastern China, there are structural features of Nanjinganthus that distinguish it from these other specimens and suggest that it is a new genus of angiosperms. Having made this discovery, the team now wants to understand whether angiosperms are either monophyletic - which would mean Nanjinganthus represents a stem group giving rise to all later species - or polyphyletic, whereby Nanjinganthus represents an evolutionary dead end and has little to do with many later species. "The origin of angiosperms has long been an academic 'headache' for many botanists," concludes senior author Xin Wang, Research Professor at the Nanjing Institute of Geology and Paleontology. "Our discovery has moved the botany field forward and will allow a better understanding of angiosperms, which in turn will enhance our ability to efficiently use and look after our planet's plant-based resources."
Research Report: 'An unexpected noncarpellate epigynous flower from the Jurassic of China'
![]() ![]() Why deep oceans gave life to the first big, complex organisms Stanford CA (SPX) Dec 14, 2018 In the beginning, life was small. For billions of years, all life on Earth was microscopic, consisting mostly of single cells. Then suddenly, about 570 million years ago, complex organisms including animals with soft, sponge-like bodies up to a meter long sprang to life. And for 15 million years, life at this size and complexity existed only in deep water. Scientists have long questioned why these organisms appeared when and where they did: in the deep ocean, where light and food are scarce, in a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |