24/7 Space News
EARLY EARTH
Fossilized 319-million-year-old fish illuminates backboned animals' brain evolution
Artist's interpretation of a remarkable 319-million-year-old fish that preserves the earliest fossilized brain of a backboned animal. CT images of the brain are helping to unravel the sequence of neural evolution in one of today's most diverse vertebrate lineages. The fish, Coccocephalus wildi, would have been 6 to 8 inches long and likely fed on small crustaceans and aquatic insects. Image credit: Marcio L. Castro.
Fossilized 319-million-year-old fish illuminates backboned animals' brain evolution
by Staff Writers
Birmingham UK (SPX) Feb 03, 2023

A 319-million-year-old fossilised fish, pulled from a coal mine in England more than a century ago, has revealed the oldest example of a well-preserved vertebrate brain. CT-scanning, where X-rays are used to reveal internal features, shows the skull of the creature contains a brain and cranial nerves that are roughly an inch long.

Researchers at the University of Birmingham (UK) and the University of Michigan (USA) believe that the discovery opens a window into the neural anatomy and early evolution of a major group of fishes alive today - ray-finned fishes.

Their findings, Feb 1 in Nature, shed new light into the preservation of soft parts in fossils of backboned animals. Most of the animal fossils in museum collections were formed from hard body parts such as bones, teeth and shells.

Senior author Sam Giles, of the University of Birmingham, commented: "This unexpected find of a three-dimensionally preserved vertebrate brain gives us a startling insight into the neural anatomy of ray-finned fish. It tells us a more complicated pattern of brain evolution than suggested by living species alone, allowing us to better define how and when present day bony fishes evolved.

"Comparisons to living fishes showed that the brain of Coccocephalus is most similar to the brains of sturgeons and paddlefish, which are often called 'primitive' fishes because they diverged from all other living ray-finned fishes more than 300 million years ago."

The CT-scanned brain analysed belongs to Coccocephalus wildi, an early ray-finned fish roughly the size of a bream that swam in an estuary and likely dined on small crustaceans, aquatic insects and cephalopods, a group that today includes squid, octopuses and cuttlefish. Ray-finned fishes have backbones and fins supported by bony rods called rays.

Soft tissues such as the brain normally decay quickly and very rarely fossilise. But when this fish died, the soft tissues of its brain and cranial nerves were replaced during the fossilization process with a dense mineral that preserved, in exquisite detail, their three-dimensional structure.

Senior author Matt Friedman, from the University of Michigan, commented: "An important conclusion is that these kinds of soft parts can be preserved, and they may be preserved in fossils that we've had for a long time-this is a fossil that's been known for over 100 years."

The skull fossil from England is the only known specimen of its species, so only non-destructive techniques could be used during the U-M-led study.

Lead author Rodrigo Figueroa, also from the University of Michigan, commented: "Not only does this superficially unimpressive and small fossil show us the oldest example of a fossilised vertebrate brain, but it also shows that much of what we thought about brain evolution from living species alone will need reworking.

Scientists were not looking for a brain when they examined the skull fossil for the first time, but discovered an unusual, distinct object inside the skull. The mystery object displayed several features found in vertebrate brains: Iit was bilaterally symmetrical, it contained hollow spaces similar in appearance to ventricles, and it had multiple filaments extending toward openings in the braincase, similar in appearance to cranial nerves, which travel through such canals in living species. Significantly, the brain of Coccocephalus folds inward, unlike in all living ray-finned fishes, in which the brain folds outward.

Though preserved brain tissue has rarely been found in vertebrate fossils, scientists have had better success with invertebrates. There are roughly 30,000 ray-finned fish species, and they account for about half of all backboned animal species. The other half is split between land vertebrates-birds, mammals, reptiles and amphibians-and less diverse fish groups like jawless fishes and cartilaginous fishes.

The Coccocephalus skull fossil is on loan to the University of Michigan from Manchester Museum, in the UK. It was recovered from the roof of the Mountain Fourfoot coal mine in Lancashire and was first scientifically described in 1925. The fossil was found in a layer of soapstone adjacent to a coal seam in the mine.

Though only its skull was recovered, scientists believe that C. wildi would have been 6 to 8 inches long. Judging from its jaw shape and its teeth, it was probably a carnivore, according to Figueroa. When the fish died it was probably quickly buried in sediments with little oxygen present. Such environments can slow the decomposition of soft body parts.

The fossil captures a time before a signature feature of ray-finned fish brains evolved, providing an indication of when this trait evolved.

Research Report:Exceptional fossil preservation and evolution of the ray-finned fish brain

Related Links
University of Birmingham
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
Ancient fossils shed new light on evolution of sea worm
Durham UK (SPX) Feb 01, 2023
Ancient fossils have shed new light on a type of sea worm linking it to the time of an evolutionary explosion that gave rise to modern animal life. Researchers at Durham University, UK, and Northwest University, Xi'an, China, examined 15 exceptionally preserved fossils of the annelid worm Iotuba chengjiangensis dating from the early Cambrian period 515 million years ago. The fossilised remains included evidence of the worms' guts and kidneys and revealed they had an unexpectedly complex stru ... read more

EARLY EARTH
NASA Spinoffs bolster climate resilience, improve medical care, more

UAE astronaut says not required to fast during Ramadan on ISS

NASA selects nine technologies for commercial flight tests

20 Years Ago: Remembering Columbia and Her Crew

EARLY EARTH
Lockheed Martin team up with DARPA and AFRL for hypersonics

Columbia disaster that scuttled the space shuttle

NASA validates revolutionary propulsion design for deep space missions

MIT Gas Turbine Laboratory prepares to jet into the future

EARLY EARTH
Making the Most of Limited Data: Sols 3278-3279

Perseverance completes Mars Sample Depot

Is there life on Mars? Maybe, and it could have dropped its teddy

Dust bedevils Perseverance with damaging winds

EARLY EARTH
China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

EARLY EARTH
Iridium GO exec redefines personal off-the-grid connectivity

Inmarsat-6 F2 satellite arrives on board an Airbus Beluga in Florida for launch

Ovzon receives first SATCOM-as-a-Service order from Spain

SpaceX launches 56 more Starlink satellites in heaviest payload yet

EARLY EARTH
Ghostly mirrors for high-power lasers

Rescuing small plastics from the waste stream

Purdue uncovers a new method for generating spinning thermal radiation

IBM and NASA collaborate to research impact of climate change with AI

EARLY EARTH
Will machine learning help us find extraterrestrial life

AI joins search for ET

Watch distant worlds dance around their sun

Webb Telescope identifies origins of icy building blocks of life

EARLY EARTH
NASA's Juno Team assessing camera after 48th flyby of Jupiter

Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.