. 24/7 Space News .
ROBO SPACE
For climbing robots, the sky's the limit
by Staff Writers
Pasadena CA (JPL) Jul 11, 2019

RoboSimian can walk on four legs, crawl, move like an inchworm and slide on its belly. In this photo it stands on the Devil's Golf Course in Death Valley, California, for field testing with engineer Brendan Chamberlain-Simon.Credit: NASA/JPL-Caltech

Robots can drive on the plains and craters of Mars, but what if we could explore cliffs, polar caps and other hard-to-reach places on the Red Planet and beyond? Designed by engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence (AI) to find its way around obstacles.

In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff while scanning the rock for ancient fossils from the sea that once filled the area.

LEMUR was originally conceived as a repair robot for the International Space Station. Although the project has since concluded, it helped lead to a new generation of walking, climbing and crawling robots.

In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could aid in the search for similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds. Here are five in the works:

A Mechanical Worm for Icy Worlds
How does a robot navigate a slippery, icy surface? For Ice Worm, the answer is one inch at a time. Adapted from a single limb of LEMUR, Ice Worm moves by scrunching and extending its joints like an inchworm. The robot climbs ice walls by drilling one end at a time into the hard surface. It can use the same technique to stabilize itself while taking scientific samples, even on a precipice.

The robot also has LEMUR's AI, enabling it to navigate by learning from past mistakes. To hone its technical skills, JPL project lead Aaron Parness tests Ice Worm on glaciers in Antarctica and ice caves on Mount St. Helens so that it can one day contribute to science on Earth and more distant worlds: Ice Worm is part of a generation of projects being developed to explore the icy moons of Saturn and Jupiter, which may have oceans under their frozen crusts.

A Robotic Ape on the Tundra
Ice Worm isn't the only approach being developed for icy worlds like Saturn's moon Enceladus, where geysers at the south pole blast liquid into space. A rover in this unpredictable world would need to be able to move on ice and silty, crumbling ground. RoboSimian is being developed to meet that challenge.

Originally built as a disaster-relief robot for the Defense Advanced Research Projects Agency (DARPA), it has been modified to move in icy environments. Nicknamed "King Louie" after the character in "The Jungle Book," RoboSimian can walk on four legs, crawl, move like an inchworm and slide on its belly like a penguin.

It has the same four limbs as LEMUR, but JPL engineers replaced its gripping feet with springy wheels made from music wire (the kind of wire found in a piano). Flexible wheels help King Louie roll over uneven ground, which would be essential in a place like Enceladus.

Tiny Climbers
Micro-climbers are wheeled vehicles small enough to fit in a coat pocket but strong enough to scale walls and survive falls up to 9 feet (3 meters). Developed by JPL for the military, some micro-climbers use LEMUR's fishhook grippers to cling to rough surfaces, like boulders and cave walls.

Others can scale smooth surfaces, using technology inspired by a gecko's sticky feet. The gecko adhesive, like the lizard it's named for, relies on microscopic angled hairs that generate van der Waals forces - atomic forces that cause "stickiness" if both objects are in close proximity.

Enhancing this gecko-like stickiness, the robots' hybrid wheels also use an electrical charge to cling to walls (the same phenomenon makes your hair stick to a balloon after you rub it on your head).

JPL engineers created the gecko adhesive for the first generation of LEMUR, using van der Waals forces to help it cling to metal walls, even in zero gravity. Micro-climbers with this adhesive or gripping technology could repair future spacecraft or explore hard-to-reach spots on the Moon, Mars and beyond.

Ocean to Asteroid Grippers
Just as astronauts train underwater for spacewalks, technology built for ocean exploration can be a good prototype for missions to places with nearly zero gravity. The Underwater Gripper is one of the gripping hands from LEMUR, with the same 16 fingers and 250 fishhooks for grasping irregular surfaces.

It could one day be sent for operations on an asteroid or other small body in the solar system. For now, it's attached to the underwater research vessel Nautilus operated by the Ocean Exploration Trust off the coast of Hawaii, where it helps take deep ocean samples from more than a mile below the surface.

A Cliff-Climbing Mini-Helicopter
The small, solar-powered helicopter accompanying NASA's Mars 2020 rover will fly in short bursts as a technology demonstration, paving the way for future flying missions at the Red Planet. But JPL engineer Arash Kalantari isn't content to simply fly; he's developing a concept for a gripper that could allow a flying robot to cling to Martian cliffsides.

The perching mechanism is adapted from LEMUR's design: It has clawed feet with embedded fishhooks that grip rock much like a bird clings to a branch. While there, the robot would recharge its batteries via solar panels, giving it the freedom to roam and search for evidence of life.


Related Links
Jet Propulsion Laboratory
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Jumping space robot 'flies' like a spacecraft
Paris (ESA) Jul 08, 2019
Astronauts on the Moon found themselves hopping around, rather than simply walking. Switzerland's SpaceBok planetary exploration robot has followed their example, launching all four legs off the ground during tests at ESA's technical heart. SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich. It is currently being tested using robotic facilities at ESA's ESTEC technical centre in the Netherlands. Work is proceeding under the leadership of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Virgin Galactic seeks space tourism boost with market launch

Russian Federatsiya spacecraft crew could be killed in case of water landing

Keeping NASA's Oldest Explorers Going

Branson's Virgin Galactic to go public: report

ROBO SPACE
Pioneer satellites launched

Scientists make breakthrough that enables rockets to orbit longer

Ball Aerospace begins on-orbit testing of green fuel

China to launch constellation with 72 satellites for Internet of Things

ROBO SPACE
Sustaining Life on Long-Term Crewed Missions Will Require Planetary Resources

InSight Uncovers the 'Mole' on Mars

Mars 2020 Rover Gets a Super Instrument

Methane vanishing on Mars

ROBO SPACE
From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

ROBO SPACE
To be a rising star in the space economy, Australia should also look to the East

Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

ROBO SPACE
RUBI - Full steam ahead for the ISS

Would your mobile phone be powerful enough to get you to the moon?

ThinKom completes technology validation on Telesat low-earth orbit satellite

ATLAS expands on-orbit customer base, bolsters global ground network

ROBO SPACE
Discovering Exoplanets with Gravitational Waves

Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

ROBO SPACE
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.