. 24/7 Space News .
STELLAR CHEMISTRY
Foam offers way to manipulate light
by Staff Writers
Princeton NJ (SPX) Nov 19, 2019

In a combination of chemistry, physics and materials science, Princeton researchers found that a type of foam can selectively block light, which is important for next-generation devices that compute with light instead of electricity. A computer model of the foam, above, shows the energy density of light as it passes through the foam.

There is more to foam than meets the eye. Literally. A study by Princeton scientists has shown that a type of foam long studied by scientists is able to block particular wavelengths of light, a coveted property for next-generation information technology that uses light instead of electricity.

The researchers, integrating expertise from materials science, chemistry and physics, conducted exhaustive computational simulations of a structure known as a Weaire-Phelan foam. They found that this foam would allow some frequencies of light to pass through while completely reflecting others. This selective blocking, known as a photonic band gap, is similar to the behavior of a semiconductor, the bedrock material behind all modern electronics because of its ability to control the flow of electrons at extremely small scales.

"This has the property we want: an omnidirectional mirror for a certain range of frequencies," said Salvatore Torquato, professor of chemistry and the Princeton Institute for the Science and Technology of Materials. Torquato, the Lewis Bernard Professor of Natural Sciences, published the results Nov. 6 in the Proceedings of the National Academy of Sciences, with coauthors Michael Klatt, a postdoctoral researcher, and physicist Paul Steinhardt, who is Princeton's Albert Einstein Professor in Science.

While numerous examples of photonic band gaps have been shown previously in various types of crystals, the researchers believe that their new finding is the first example in a foam, similar to the froth of soap bubbles or a draft beer. Unlike the disordered foam of beer however, the Weaire-Phelan foam is a precisely structured arrangement with deep roots in mathematics and physics.

The origins of the Weaire-Phelan foam date to 1887 when the Scottish physicist Lord Kelvin proposed a structure for the "ether," the mysterious substance that was then thought to comprise a background structure to all space. Although the concept of the ether was already falling out of favor at the time, Kelvin's proposed foam went on to intrigue mathematicians for a century because it appeared to be the most efficient way to fill space with interlocking geometrical shapes that have the least possible surface area.

In 1993, physicists Denis Weaire and Robert Phelan found an alternative arrangement that requires slightly less surface area. Since then, interest in the Weaire-Phelan structure was mainly in the mathematics, physics and artistic communities. The structure was used as the outer wall of the "Beijing Water Cube" created for the 2008 Olympics. The new finding now makes the structure of interest to materials scientists and technologists.

"You start out with a classical, beautiful problem in geometry, in mathematics, and now suddenly you have this material that opens up a photonic band gap," Torquato said.

Torquato, Klatt and Steinhardt became interested in the Weaire-Phelan foam as a tangent of another project in which they were investigating "hyperuniform" disordered materials as an innovative way to control light. Although not their original focus, the three realized that this precisely structured foam had intriguing properties.

"Little by little, it became apparent that there was something interesting here," Torquato said. "And eventually we said, 'Ok, let's put the main project to the side for a while to pursue this.'"

"Always look out for what's at the wayside of research," Klatt added.

Weaire, who was not involved in this new finding, said that the Princeton discovery is part of a broadening interest in the material since he and Phelan discovered it. He said the possible new use in optics likely stems from the material being very isotropic, or not having strongly directional properties.

"The fact that it displays a photonic band gap is very interesting because it turns out to have so many special properties," said Andrew Kraynik, an expert in foams who earned his Ph.D. in chemical engineering from Princeton in 1977 and has studied the Weaire-Phelan foam extensively but was not involved in the Princeton study. Another Princeton connection, said Kraynik, is that a key tool in discovering and analyzing the Weaire-Phelan foam is a software tool called Surface Evolver, which optimizes shapes according to their surface properties and was written by Ken Brakke, who earned his Ph.D. in math at Princeton in 1975.

To show that the Weaire-Phelan foam exhibited the light-controlling properties they were seeking, Klatt developed a meticulous set of calculations that he executed on the supercomputing facilities of the Princeton Institute for Computational Science and Engineering.

"The programs he had to run are really computationally intensive," Torquato said.

The work opens numerous possibilities for further invention, said the researchers, who dubbed the new area of work as "phoamtonics" (a mashup of "foam" and "photonics"). Because foams occur naturally and are relatively easy to make, one possible goal would be to coax raw materials to self-organize into the precise arrangement of the Weaire-Phelan foam, Torquato said.

With further development, the foam could transport and manipulate light used in telecommunications. Currently much of the data traversing the internet is carried by glass fibers. However, at its destination, the light is converted back to electricity. Photonic band gap materials could guide the light much more precisely than conventional fiber optic cables and might serve as optical transistors that perform computations using light.

"Who knows?" said Torquato. "Once you have this as a result, then it provides experimental challenges for the future."

Research paper


Related Links
Princeton University, Engineering School
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
Washington DC (SPX) Nov 18, 2019
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have developed an optical switch that routes light from one computer chip to another in just 20 billionths of a second - faster than any other similar device. The compact switch is the first to operate at voltages low enough to be integrated onto low-cost silicon chips and redirects light with very low signal loss. The switch's record-breaking performance is a major new step toward building a computer tha ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
UAE's first astronaut urges climate protection on Earth

Scarier than fiction: climate worry driving 'cli-fi' boom

Commerce leaders introduce the NASA Authorization Act of 2019

Are we set to taste space wine

STELLAR CHEMISTRY
Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

STELLAR CHEMISTRY
NASA's Mars 2020 will hunt for microscopic fossils

The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

STELLAR CHEMISTRY
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

STELLAR CHEMISTRY
SpaceX faces competitors in race to build Internet-satellite constellation

SpaceX launches Starlink satellites with first reused rocket nose

European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

STELLAR CHEMISTRY
Artificial intelligence to run the chemical factories of the future

Research reveals new state of matter with a Cooper pair metal

Theoretical tubulanes inspire ultrahard polymers

Plasma crystal research on the ISS

STELLAR CHEMISTRY
Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

The most spectacular celestial vision you'll never see

STELLAR CHEMISTRY
New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

NASA renames faraway ice world 'Arrokoth' after backlash

Juice cast in gold

SwRI to plan Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.