. 24/7 Space News .
INTERNET SPACE
Fish and insects guide design for future contact lenses
by Staff Writers
Bethesda MD (SPX) Mar 22, 2016


Many of the components for the contact lens -- the sensors, electronics, solar cells -- will be embedded along the edge of a flexible material. Image courtesy Dr. Hongrui Jiang. For a larger version of this image please go here.

Making the most of the low light in the muddy rivers where it swims, the elephant nose fish survives by being able to spot predators amongst the muck with a uniquely shaped retina, the part of the eye that captures light. In a new study, researchers looked to the fish's retinal structure to inform the design of a contact lens that can adjust its focus.

Imagine a contact lens that autofocuses within milliseconds. That could be life-changing for people with presbyopia, a stiffening of the eye's lens that makes it difficult to focus on close objects.

Presbyopia affects more than 1 billion people worldwide, half of whom do not have adequate correction, said the project's leader, Hongrui Jiang, Ph.D., of the University of Wisconsin, Madison. And while glasses, conventional contact lenses and surgery provide some improvement, these options all involve the loss of contrast and sensitivity, as well as difficulty with night vision. Jiang's idea is to design contacts that continuously adjust in concert with one's own cornea and lens to recapture a person's youthful vision.

The project, for which Jiang received a 2011 NIH Director's New Innovator Award (an initiative of the NIH Common Fund) funded by the National Eye Institute, requires overcoming several engineering challenges.

They include designing the lens, algorithm-driven sensors, and miniature electronic circuits that adjust the shape of the lens, plus creating a power source - all embedded within a soft, flexible material that fits over the eye.

In their latest study, published in Proceedings of the National Academy of Sciences, Jiang and his team focused on a design for the image sensors. "The sensors must be extremely small and capable of acquiring images under low-light conditions, so they need to be exquisitely sensitive to light," Jiang said.

The team took their inspiration from the elephant nose fish's retina, which has a series of deep cup-like structures with reflective sidewalls. That design helps gather light and intensify the particular wavelengths needed for the fish to see. Borrowing from nature, the researchers created a device that contains thousands of very small light collectors.

These light collectors are finger-like glass protrusions, the inside of which are deep cups coated with reflective aluminum. The incoming light hits the fingers and then is focused by the reflective sidewalls. Jiang and his team tested this device's ability to enhance images captured by a mechanical eye model designed in a lab.

In separate studies, the researchers have designed and tested a couple of different approaches for the contact lens material. For one approach, they formed a liquid lens from a droplet of silicone oil and water, which won't mix.

The droplet sits in a chamber atop a flexible platform, while a pair of electrodes produces an electric field that modifies the surface tension of each liquid differently, resulting in forces that squeeze the droplet into different focal lengths. The lens is able to focus on objects as small as 20 micrometers, roughly the width of the thinnest human hair.

They developed another type of lens inspired by the compound eyes of insects and other arthropods. Insect eyes comprise thousands of individual microlenses that each point in different directions to capture a specific part of a scene.

Jiang and his colleagues developed a flexible array of artificial microlenses. "Each microlense is made out of a forest of silicon nanowires," Jiang explained. Together, the microlenses provide even greater resolution than the liquid lens.

The array's flexibility makes it suitable not only for contact lenses, but for other potential uses. Wrap it around a laparoscopic surgical scope and you've got a high-resolution, 360-degree view inside a patient's body. Mount it on a lamppost and you can see the surrounding intersection from all sides.

In order to change focus, the contact lens will also need to be equipped with an extremely small, thin power source.

Jiang's working solution: a solar cell that simultaneously harvests electrons from sunlight, converting them into electricity, and that also stores energy within a network of nanostructures.

It works much the way a conventional solar panel does, but the addition of storage capability within a single device is novel, Jiang said. The device still needs tweaking, but the team is optimistic that it will be powerful enough to drive the lens yet small enough to fit the space available.

A prototype for clinical testing may still be five to 10 years off, Jiang said. Once it's available, however, it may not cost much more than conventional contact lenses. "There's a huge market for this and with mass production, the cost is not likely to be a barrier," he said.

Research paper: Hewei Liu, Yinggang Huang, and Hongrui Jiang "An Artificial Eye for Scotopic Vision with Bioinspired All-Optical Photosensitivity Enhancer," PNAS, March 14, 2016, DOI:10.1073/pnas.1517953113. For more about presbyopia


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Eye Institute
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
World's thinnest lens to revolutionize cameras
Canberra, Australia (SPX) Mar 17, 2016
Scientists have created the world's thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras. Lead researcher Dr Yuerui (Larry) Lu from The Australian National University (ANU) said the discovery hinged on the remarkable potential of the molybdenum disulphide crystal. "This type of material i ... read more


INTERNET SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

INTERNET SPACE
How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

Close comet flyby threw Mars' magnetic field into chaos

INTERNET SPACE
Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

Space Race Competition helps turn NASA Tech into new products

INTERNET SPACE
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

INTERNET SPACE
Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

Roscosmos-NASA Contract on US Astronauts Delivery to ISS on Restructuring

NASA station leads way for improved measurements of Earth orientation, shape

INTERNET SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

INTERNET SPACE
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

INTERNET SPACE
A foldable material that can change size, volume and shape

The world's blackest material is now in spray form

New insights into atomic disordering of complex metal oxides

How to make porous materials dry faster









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.