![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pohang, South Korea (SPX) Sep 24, 2021
When optical gain or loss are precisely controlled using nanophotonics, a new physical event called the non-Hermitian phenomenon can be observed, potentially the next-generation technology of optical signal control and sensing. However, it is difficult to control the optical gain and loss in optical experiments precisely. Recently, a research team led by Professor Heedeuk Shin of the Department of Physics at POSTECH, in collaboration with a research team led by Professor Jae Woong Yoon of the Department of Physics at Hanyang University, proposed an easy-to-use approach to non-Hermitian optical research and observed the energy-difference conservation in the optical domain for the first time. The Hermitian-Hamiltonian operator has been used for a long time as a basic operating principle of quantum physics, assuming that there is no energy loss in a closed system. However, all physical systems in an open system have energy loss, which is treated as a simple imperfection and compensated by amplification. However, the recently emerging field of non-Hermitian physics extends the basic operating principle by giving gain and loss a new role other than simple correction to incomplete systems. Demonstrating physical phenomena different from those of the standard Hermitian-Hamiltonian dynamics is attracting attention as the next generation signal and energy control technology. Among the non-Hermitian physical systems, anti-parity-time (APT) symmetry systems consisting of balanced gain and loss can induce symmetry-breaking transitions that occur at an exceptional point, energy-difference conservation, and synchronized power oscillations. However, optical energy-difference conservation and synchronized power oscillation have not yet been observed due to the difficulty of balancing perfectly optical gain and loss. To this, the researchers produced an APT symmetry platform based on nonlinear four-wave-mixing (FWM) using optical fibers widely used in optical communication. Using optical fibers enabled a simple experimental device with an elongated interaction length with little energy loss, which has been difficult to access even in nano-photonics due to the fabrication limitations. Using the proposed method, the researchers observed synchronized oscillations of optical intensity thanks to the long optical fibers as well as symmetry-breaking transitions at an exceptional point. In addition, using the low loss and nonlinearity of optical fibers, the energy-difference conservation - a unique behavior of the APT symmetry systems - was observed for the first time in the optical domain. "This study provides an efficient experimental framework for research on non-Hermitian physics," explained Professor Heedeuk Shin of POSTECH. "It will contribute to higher-level non-Hermitian research and become an important stepping stone for interdisciplinary research including materials development and quantum information science."
Research Report: "Optical Energy-Difference Conservation in a Synthetic Anti-PT-Symmetric System"
![]() ![]() Spintronics: Physicists develop miniature terahertz sources Halle, Germany (SPX) Sep 15, 2021 Researchers at Martin Luther University Halle-Wittenberg (MLU) and Freie Universitat Berlin have developed a new, simple approach for generating terahertz radiation. Strong optical laser pulses enable terahertz electromagnetic fields to be generated directly at a specific point. The team has published its findings in the journal "ACS Applied Nano Materials". Potential applications for terahertz radiation are wide ranging - from materials testing to communications and security technology. Ter ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |