24/7 Space News
STELLAR CHEMISTRY
First hints of nuclear fission in cosmos revealed by models, observations
SPX stock illustration only
First hints of nuclear fission in cosmos revealed by models, observations
by Staff Writers
Los Alamos NM (SPX) Dec 08, 2023

The elements above iron on the periodic table are thought to be created in cataclysmic explosions like the merger of two neutron stars or in rare classes of supernovae. New research suggests fission may operate in the cosmos during the creation of the heavy elements. Combing through data on a variety of elements that reside in very old stars, researchers have found a potential signature of fission, indicating that nature is likely to produce superheavy nuclei beyond the heaviest elements on the periodic table.

"People have thought fission was happening in the cosmos, but to date, no one has been able to prove it," said Matthew Mumpower, a theoretical physicist at Los Alamos National Laboratory and co-author of a paper in Science presenting the research.

Using the latest observations, Mumpower said, the researchers found a correlation between light precision metals like silver and rare earth nuclei like europium. When one of these groups of elements goes up, the corresponding elements in the other group also increase - the correlation is positive.

'Incredibly profound" evidence of fission
"The only plausible way this can arise among different stars is if there is a consistent process operating during the formation of the heavy elements," Mumpower said. The team tested all the possibilities and fission was the only explanation that was able to reproduce the trend.

"This is incredibly profound and is the first evidence of fission operating in the cosmos, confirming a theory we proposed several years ago," Mumpower said. "As we've acquired more observations, the cosmos is saying hey, there's a signature here, and it can only come from fission."

The research also indicates that elements with an atomic mass (the number of protons plus neutrons) of 260 - heavier than those charted at the high end of the periodic table - may exist.

Mumpower developed the fission models used to predict and guide the observational findings, which were led by study author Ian Roederer of North Carolina State University.

Heavy research
Astrophysicists have long believed heavy elements beyond iron were formed in stellar explosions called supernova or when two neutron stars merged. As the name implies, the latter are composed largely of neutrons, which together with protons form the nuclei of all atoms. Through the rapid-neutron capture process, dubbed the r-process, atomic nuclei grab neutrons to form heavier elements. Whether some grow too heavy to hold together and split, or fission, forming two atoms of lighter but still heavy elements (and releasing tremendous energy) has remained a mystery for a half century.

In a 2020 paper, Mumpower first predicted the distributions of fission fragments for r-process nuclei. A subsequent study led by collaborator Nicole Vassh at TRIUMF predicted the co-production of light precision metals and rare earth nuclei. This co-production of elements like elements ruthenium, rhodium, palladium and silver, and those like europium, gadolinium, dysprosium and holmium, can be tested by comparing the prediction with elemental abundances in a collection of stars.

The new analysis led by Roederer combed through observational data from 42 stars and found precisely the predicted correlation. The pattern provides a clear signature of fission creating these elements and a similar pattern of elements slightly heavier and higher on the periodic table.

"The correlation is very robust in r-process enhanced stars where we have sufficient data. Every time nature produces an atom of silver, it's also producing heavier rare earth nuclei in proportion. The composition of these element groups are in lock step," Mumpower said. "We have shown that only one mechanism can be responsible - fission - and people have been racking brains about this since the 1950s."

From stockpile stewardship to the stars
"At Los Alamos, we developed nuclear fission models because we can't measure everything that's relevant for weapons research as part of the Laboratory's mission," Mumpower said. The models allow physicists to interpret experiments and fill in data when measurements are lacking. Since the United States halted testing of nuclear weapons in 1992, experimental data on fission has been limited.

The models perform exceptionally well when compared to measured data and thus give credence to their extrapolations where there are no measurements. The nuclear inputs of both short-lived and long-lived species are required for studies of heavy element formation, Mumpower said. Fission yields are products of the process of splitting relatively heavy atoms into lighter ones - the same process used in nuclear weapons and reactors.

Research Report:Element abundance patterns in stars indicate fission of nuclei heavier than uranium

Related Links
Los Alamos National Laboratory
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Ancient stars made extraordinarily heavy elements
Raleigh NC (SPX) Dec 08, 2023
How heavy can an element be? An international team of researchers has found that ancient stars were capable of producing elements with atomic masses greater than 260, heavier than any element on the periodic table found naturally on Earth. The finding deepens our understanding of element formation in stars. We are, literally, made of star stuff. Stars are element factories, where elements constantly fuse or break apart to create other lighter or heavier elements. When we refer to light or heavy el ... read more

STELLAR CHEMISTRY
French 'Baguette One' rocket project gets funding

Blue Origin announces space launch next week, first since 2022 crash

Lost tomato found aboard International Space Station after eight months

NASA's Commercial Partners Continue Progress on New Space Stations

STELLAR CHEMISTRY
Rocket Lab Sets Launch Date for iQPS's 'The Moon God Awakens' Mission

NASA Teams Prepare Moon Rocket-to-Spacecraft Connector for Assembly

UK's Orbex secures funding for carbon-neutral spaceport development

Next-generation methane rocket to be more powerful

STELLAR CHEMISTRY
How Rocks Say Don't Touch: Sols 4032-4034

NASA's Perseverance Rover Deciphers Ancient History of Martian Lake

A Rinse and Repeat Kind of Plan: Sols 4035-4036

MAVEN observes the disappearing solar wind

STELLAR CHEMISTRY
China's space programme: Five things to know

Long March rockets mark their 500th spaceflight

CAS Space expands into Guangdong with new rocket engine testing complex

China's Lunar Samples on Display in Macao to Inspire Future Explorers

STELLAR CHEMISTRY
USAGM enlists SES Space and Defense for advanced global satellite Broadcasting

Investor Coalition demands leadership overhaul at Terran Orbital amid CEO controversy

Iridium's New GMDSS Academy to Bolster Safety Training for Maritime Professionals

Embry-Riddle's Innovative Mission Control Lab prepares students for booming space sector

STELLAR CHEMISTRY
NASA's Space Station Laser Comm Terminal Achieves First Link

Leidos completes successful Lonestar Tactical Space Support Vehicle demonstration

Innovative 3D printing technology shapes future of Australian housing

NASA Laser Reflecting Instruments to Help Pinpoint Earth Measurements

STELLAR CHEMISTRY
Some Icy Exoplanets May Have Habitable Oceans and Geysers

14-inch spacecraft delivers new details about 'hot Jupiters'

Seeing and Believing: 15 Years of Exoplanet Images

NASA's Webb identifies tiniest free-floating brown dwarf

STELLAR CHEMISTRY
Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.