. | . |
Fingerprint research to combat harmful bacteria by Staff Writers Cologne, Germany (SPX) Jan 19, 2022
Microorganisms exist everywhere where humans are found. And humans are everywhere - not just on Earth, but on the International Space Station (ISS), as well. Some of these microscopic creatures are perfectly harmless, but others can cause serious diseases or even inflict material damage on the ISS. The German Aerospace Center is investigating ways of preventing this in its 'Touching Surfaces' experiment, which is being carried out on board the ISS, at Cologne University Hospital and now also by schoolchildren. The 10 chosen schools have received special sample holders - 'touch arrays' - for the experiment. These hold copper, brass and steel surfaces fixed into an aluminium frame, each with three different surface textures. Over the course of 15 weeks, the 10- to 16-year-old pupils that make up the project teams will touch all of the metal surfaces in the touch arrays once per week. In doing so, they will leave behind their fingerprints and the microorganisms that adhere to them every day when they grasp door handles or press light switches, for instance. "After our young researchers have touched the touch arrays, they will wash and disinfect their hands," says Ralf Moller of the DLR Institute of Aerospace Medicine in Cologne. "The process has been precisely defined and the results are scientifically comparable with one another, just like the experiment that is taking place in parallel on board the ISS.' In addition to the touch arrays, the test package for each school contains sticks for swabs, petri dishes and sampling vessels for DNA testing on microbial contamination. The samples will be evaluated in conjunction with the DLR_School_Labs. "The experiment provides the participants with insights into interdisciplinary research, as Touching Surfaces brings together biology, medicine, physics, chemistry and materials sciences," says Moller.
Copper, brass and steel have different effects on microorganisms
Which bacteria adhere to which surfaces? Touching Surfaces is intended to increase the efficacy of antimicrobial surfaces designed for use in space and on Earth. Such surfaces are also important in combating infectious diseases; they can help kill antibiotic-resistant bacteria such as Methicillin-Resistant Staphylococcus Aureus (MRSA) or Vancomycin-Resistant Enterococci (VRE) in hospitals and ensure that pathogens cannot continue to spread via contact surfaces. The project is part of the Cosmic Kiss mission of ESA astronaut Matthias Maurer, which launched to the ISS in early November 2021. Maurer and the other astronauts on board will also touch the touch arrays once per week, transferring the microorganisms from their hands to the surfaces in the process. The five touch arrays from the ISS will later be sent back to Earth for analysis at DLR.
Being in space destroys more red blood cells Ottawa, Canada (SPX) Jan 14, 2022 A world-first study has revealed how space travel can cause lower red blood cell counts, known as space anemia. Analysis of 14 astronauts showed their bodies destroyed 54 percent more red blood cells in space than they normally would on Earth, according to a study published in Nature Medicine. "Space anemia has consistently been reported when astronauts returned to Earth since the first space missions, but we didn't know why," said lead author Dr. Guy Trudel, a rehabilitation physician and researc ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |