24/7 Space News
TECTONICS
Finding Argoland: how a lost continent resurfaced
What happened to Argoland, the continent that broke off western Australia 155 million years ago? Geologists at Utrecht University have now managed to reconstruct the history of the lost continent. As it turns out, Argoland is in fragments, but is still there.
Finding Argoland: how a lost continent resurfaced
by Staff Writers
Utrecht, Netherlands (SPX) Oct 30, 2023

Geologists have long known that around 155 million years ago, a 5000 km long piece of continent broke off western Australia and drifted away. They can see that by the 'void' it left behind: a basin hidden deep below the ocean known as the Argo Abyssal Plain. The underwater feature also lends its name to the newly formed continent: Argoland. The structure of the seafloor shows that this continent must have drifted off to the northwest, and must have ended up where the islands of Southeast Asia are located today.

But surprisingly, there is no large continent hidden beneath those islands, only the remnants of small continental fragments that are also surrounded by much older oceanic basins. So what happened to Argoland? Geologists at Utrecht University have now managed to reconstruct the history of the lost continent. As it turns out, Argoland is in fragments, but is still there. "Otherwise, we would have been faced with a major scientific problem."

Geologists differentiate the earth's crust into the heavier oceanic crust and lighter continental crust. These lighter continents may be partially hidden below sea level, as was also the case with another 'lost' continent, Greater Adria. Like Argoland, it also consisted of different fragments separated by narrow ocean basins, which eventually became part of a single tectonic plate. At some point in the past, Greater Adria plunged into the earth's mantle, but the top layer stayed behind and was folded to form the mountains of Southern Europe. Argoland, however, left no such trace in the form of folded rock strata.

Traces from foregone eras
"If continents can dive into the mantle and disappear entirely, without leaving a geological trace at the earth's surface, then we wouldn't have much of an idea of what the earth could have looked in the geological past. It would be almost impossible to create reliable reconstructions of former supercontinents and the earth's geography in foregone eras", explains Utrecht University geologist Douwe van Hinsbergen. "Those reconstructions are vital for our understanding of processes like the evolution of biodiversity and climate, or for finding raw materials. And at a more fundamental level: for understanding how mountains are formed or for working out the driving forces behind plate tectonics; two phenomena that are closely related."

Collage
Van Hinsbergen and his colleague Eldert Advokaat were curious about what the geology of Southeast Asia could tell about Argoland's fate. "But we were literally dealing with islands of information, which is why our research took so long. We spent seven years putting the puzzle together", says Advokaat. "The situation in Southeast Asia is very different from places like Africa and South America, where a continent broke neatly into two pieces. Argoland splintered into many different shards. That obstructed our view of the continent's journey." But that was until he realised that the fragments arrived at their current locations at around the same time, which clarified how they once connected together. The shards formed a collage: Argoland is hidden beneath the green jungles of large parts of Indonesia and Myanmar.

Argopelago
That splintering is typical for the microcontinent. There was never a single clearly delineated and coherent continent of Argoland, but rather an 'Argopelago' of microcontinental fragments separated by older oceanic basins. In that it resembles Greater Adria, which by now has almost entirely subducted into Earth's mantle, or Zeelandia, the largely submerged continent east of Australia. "The splintering of Argoland started around 300 million years ago", Van Hinsbergen adds.

Seamless
The puzzle that Advokaat and Van Hinsbergen have solved fits seamlessly between the neighbouring geological systems of the Himalayas and the Philippines. Their detective work also explains why Argoland is so fragmented: the break-up accelerated around 215 million years ago, as the continent shattered into thin splinters. The geologists conducted field work on several islands, including Sumatra, the Andaman Islands, Borneo, Sulawesi and Timor, to test their models and determine the age of key rock strata.

Research Report:Finding Argoland: reconstructing a microcontinental archipelago from the SE Asian accretionary orogen

Related Links
Utrecht University, Faculty of Geosciences
Tectonic Science and News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECTONICS
Superdeep diamonds provide a window on supercontinent growth
Washington DC (SPX) Oct 30, 2023
Diamonds contain evidence of the mantle rocks that helped buoy and grow the ancient supercontinent Gondwana from below, according to new research from a team of scientists led by Suzette Timmerman-formerly of the University of Alberta and now at the University of Bern-and including Carnegie's Steven Shirey, Michael Walter, and Andrew Steele. Their findings, published in Nature, demonstrate that superdeep diamonds can provide a window through space and time into the supercontinent growth and formation pr ... read more

TECTONICS
Russian space boss warns ISS equipment beyond warranty

Putin says first segment of ISS replacement to orbit by 2027

NASA improves GIANT optical navigation technology for future missions

UK and Axiom sign agreement on plans for historic human spaceflight mission

TECTONICS
Nighttime rehearsal for Ariane 6 towards first flight

New US rocket Vulcan Centaur set to launch on December 24

Rocket Lab receives FAA authorization to resume launches

UK plans space mission after striking deal with US firm

TECTONICS
Mystery of the Martian core solved

Ascending Fang Turret: Sols 3991-3993

Sampling unique bedrock at the margin unit

Short but Sweet; Sols 3987-3988

TECTONICS
China discloses tasks of Shenzhou-17 crewed space mission

Shenzhou 17 docks with Tiangong Space Station

China able, ready to invite foreign astronauts to its space station

China launches new mission to space station

TECTONICS
Follow NASA's Starling Swarm in Real Time

Fugro SpAARC's operations set to grow with new funding from Western Australian Govt

French Space Days India 2023 celebrates Indo-French collaboration

Urban Sky announces $9.75M Series A funding round

TECTONICS
NASA-ISRO radar mission to provide dynamic view of forests, wetlands

The tech to recycle clothes is only just being invented

Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science

DLR and Tesat laser terminal paves way for high-speed data transfer from space

TECTONICS
ET phone Dublin? Astrophysicists scan the Galaxy for signs of life

Exoplanet-informed research helps search for radio technosignatures

Webb detects tiny quartz crystals in clouds of hot gas giant

Extreme habitats: Microbial life in Old Faithful Geyser

TECTONICS
How NASA is protecting Europa Clipper from space radiation

NASA's Webb Discovers New Feature in Jupiter's Atmosphere

Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.