. | . |
Filamentary or flat is a matter of perspective by Staff Writers Heidelberg, Germany (SPX) May 17, 2022
Using tens of thousands of stars observed by the Gaia space probe, astronomers from MPIA and Chalmers have revealed the 3D shapes of two large star-forming molecular clouds, the California Cloud and the Orion A Cloud. In conventional 2D images, they appear similarly structured, containing filaments of dust and gas with seemingly comparable densities. In 3D, however, they look quite distinct. In fact, their densities are much more different than their images projected on the plane of the sky would suggest. This result solves the long-standing mystery of why these two clouds form stars at different rates. Cosmic clouds of gas and dust are the birthplaces of stars. More specifically, stars form in the densest pockets of such material. The temperatures drop to near absolute zero, and the densely packed gas collapses under its own weight, eventually forming a star. "Density, the amount of matter compressed into a given volume, is one of the crucial properties that determine star formation efficiency," says Sara Rezaei Khoshbakht. She is an astronomer at Max Planck Insitute for Astronomy in Heidelberg, Germany and the main author of a new article published in The Astrophysical Journal Letters today. In a pilot study portrayed in this article, Sara Rezaei Khoshbakht and co-author Jouni Kainulainen have applied a method which allows them to reconstruct 3D morphologies of molecular clouds to two giant star-forming clouds. Kainulainen is a scientist at the Chalmers University of Technology in Gothenburg, Sweden who used to work at MPIA as well. Their targets were the Orion A Cloud and the California Cloud. Usually, measuring the density within clouds is hard. "Everything we see when we observe objects in space is their two-dimensional projection on an imaginary celestial sphere," explains Jouni Kainulainen. He is an expert on interpreting the influence of cosmic matter on stellar light and calculating densities from such data. Kainulainen adds, "Conventional observations lack the necessary depth. Therefore, the only density we usually can infer from such data is the so-called column density." The column density is the mass added along a line of sight divided by the projected cross-section. Hence, those column densities do not necessarily reflect the actual densities of molecular clouds, which is problematic when relating cloud properties to star formation activity. Indeed, the images of the two clouds investigated in this work that show the thermal dust emission apparently share similar structures and densities. However, their vastly different star-forming rates have been puzzling astronomers for many years. Instead, the new 3D reconstruction now shows that those two clouds are not that alike after all. Despite the filamentary appearance the 2D images portray, the California Cloud is a flat and nearly 500 light-years long sheet of material with a large bubble that extends below. Thus, one cannot attribute a single distance to the California Cloud, which has significant repercussions for interpreting its properties. From our perspective on Earth, it is oriented almost edge-on, which only simulates a filamentary structure. As a result, the sheet's actual density is much lower than the column density suggests, explaining the discrepancy between the previous density estimates and the cloud's star formation rate. And what does the Orion A Cloud look like in 3D? The team confirmed its dense filamentary structure seen in the 2D images. However, its actual morphology also differs from what we see in 2D. Orion A is rather complex, with additional condensations along the prominent ridge of gas and dust. On average, Orion A is much denser than the California Cloud, explaining its more pronounced star formation activity. Sara Rezaei Khoshbakht, also affiliated with the Chalmers University of Technology, developed the 3D reconstruction method during her PhD at MPIA. It involves analysing the alteration of stellar light when passing through those clouds of gas and dust as measured by the Gaia space probe and other telescopes. Gaia is a European Space Agency (ESA) project whose primary purpose is to precisely measure the distances to over a billion stars in the Milky Way. Those distances are crucial for the 3D reconstruction method. "We analysed and cross-correlated the light from 160,000 and 60,000 stars for the California and Orion A Clouds, respectively," says Sara Rezaei Khoshbakht. The two astronomers reconstructed the cloud morphologies and densities at a resolution of only 15 light-years. "This is not the only approach astronomers employ to derive spatial cloud structures," Rezaei Khosbakht adds. "But our's produces robust and reliable results without numerical artefacts." This study proves its potential to improve star formation research in the Milky Way by adding a third dimension. "I think one important outcome of this work is that it challenges studies that rely solely on column density thresholds to derive star formation properties and to compare them with one another," Sara Rezaei Khoshbakht concludes. However, this work is only the first step of what the astronomers want to achieve. Sara Rezaei Khoshbakht pursues a project that ultimately will produce the spatial distribution of dust in the entire Milky Way and uncover its connection to star formation.
Research Report:3D shape explains star formation mystery of California and Orion A
Research Report:Detailed 3D structure of Orion A in dust with Gaia DR2
Explosion on a white dwarf observed Erlangen, Germany (SPX) May 13, 2022 When stars like our Sun use up all their fuel, they shrink to form white dwarfs. Sometimes such dead stars flare back to life in a super hot explosion and produce a fireball of X-ray radiation. A research team led by FAU has now been able to observe such an explosion of X-ray light for the very first time. "It was to some extent a fortunate coincidence, really," explains Ole Konig from the Astronomical Institute at FAU in the Dr. Karl Remeis observatory in Bam ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |