. | . |
Fertile ground for the elusive Majorana 'angel' particle by Staff Writers Melbourne, Australia (SPX) Jun 23, 2022
A new, multi-node FLEET review investigates the search for Majorana fermions in iron-based superconductors. The elusive Majorana fermion, or 'angel particle' proposed by Ettore Majorana in 1937, simultaneously behaves like a particle and an antiparticle - and surprisingly remains stable rather than being self-destructive. Majorana fermions promise information and communications technology with zero resistance, addressing the rising energy consumption of modern electronics (already 8% of global electricity consumption), and promising a sustainable future for computing. Additionally, it is the presence of Majorana zero-energy modes in topological superconductors that have made those exotic quantum materials the main candidate materials for realizing topological quantum computing. The existence of Majorana fermions in condensed-matter systems will help in FLEET's search for future low-energy electronic technologies.
The angel particle: both matter and antimatter Conventional fermion and anti-fermions constitute matter and antimatter, and annihilate each other when combined. "The Majorana fermion is the only exception to this rule, a composite particle that is its own antiparticle," says corresponding author Prof Xiaolin Wang (UOW). However, despite the intensive searching for Majorana particles, the clue of its existence has been elusive for many decades, as the two conflicting properties (ie, it's positive and negative charge) render it neutral and its interactions with the environment are very weak.
Topological superconductors: fertile ground for the angel particle "In the last two decades, Majorana particles have been reported in many superconductor heterostructures and have been demonstrated with strong potential in quantum computing applications" according to Dr Muhammad Nadeem, a FLEET postdoc at UOW. A few years ago, a new type of material called iron-based topological superconductors were reported hosting Majorana particles without fabrication of heterostructures, which is significant for application in real devices. "Our article reviews the most recent experimental achievements in these materials: how to obtain topological superconductor materials, experimental observation of the topological state, and detection of Majorana zero modes," says first author UOW PhD candidate Lina Sang. In these systems, quasiparticles may impersonate a particular type of Majorana fermion such as 'chiral' Majorana fermion, one that moves along a one-dimensional path and Majorana 'zero mode', one that remains bounded in a zero-dimensional space.
Applications of the Majorana zero mode The hosting of Majorana fermions in topological states of matter, topological insulators and Weyl semimetals will be covered in this month's major international conference on the physics of semiconductors (ICPS), being held in Sydney Australia. The IOP 2021 Quantum materials roadmap investigates the role of intrinsic spin-orbit coupling (SOC) based quantum materials for topological devices based on Majorana modes, laying out evidence at the boundary between strong SOC materials and superconductors, as well as in an iron-based superconductor.
Research Report:Majorana zero modes in iron-based superconductors
Experiment results confirm anomaly suggesting new physics possibility Los Alamos NM (SPX) Jun 21, 2022 New scientific results confirm an anomaly seen in previous experiments, which may point to an as-yet-unconfirmed new elementary particle, the sterile neutrino, or indicate the need for a new interpretation of an aspect of standard model physics, such as the neutrino cross section, first measured 60 years ago. Los Alamos National Laboratory is the lead American institution collaborating on the Baksan Experiment on Sterile Transitions (BEST) experiment, results of which were recently published in the jour ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |