. | . |
Fat from 558 million years ago reveals earliest known animal by Staff Writers Canberra, Australia (SPX) Sep 21, 2018
Scientists from The Australian National University (ANU) and overseas have discovered molecules of fat in an ancient fossil to reveal the earliest confirmed animal in the geological record that lived on Earth 558 million years ago. The strange creature called Dickinsonia, which grew up to 1.4 metres in length and was oval shaped with rib-like segments running along its body, was part of the Ediacara Biota that lived on Earth 20 million years prior to the 'Cambrian explosion' of modern animal life. ANU PhD scholar Ilya Bobrovskiy discovered a Dickinsonia fossil so well preserved in a remote area near the White Sea in the northwest of Russia that the tissue still contained molecules of cholesterol, a type of fat that is the hallmark of animal life. Lead senior researcher Associate Professor Jochen Brocks said the 'Cambrian explosion' was when complex animals and other macroscopic organisms - such as molluscs, worms, arthropods and sponges - began to dominate the fossil record. "The fossil fat molecules that we've found prove that animals were large and abundant 558 million years ago, millions of years earlier than previously thought," said Associate Professor Jochen Brocks from the ANU Research School of Earth Sciences. "Scientists have been fighting for more than 75 years over what Dickinsonia and other bizarre fossils of the Edicaran Biota were: giant single-celled amoeba, lichen, failed experiments of evolution or the earliest animals on Earth. The fossil fat now confirms Dickinsonia as the oldest known animal fossil, solving a decades-old mystery that has been the Holy Grail of palaeontology." Mr Bobrovskiy said the team developed a new approach to study Dickinsonia fossils, which hold the key between the old world dominated by bacteria and the world of large animals that emerged 540 million years ago during the 'Cambrian explosion'. "The problem that we had to overcome was finding Dickinsonia fossils that retained some organic matter," said Mr Bobrovskiy from the ANU Research School of Earth Sciences. "Most rocks containing these fossils such as those from the Ediacara Hills in Australia have endured a lot of heat, a lot of pressure, and then they were weathered after that - these are the rocks that palaeontologists studied for many decades, which explained why they were stuck on the question of Dickinsonia's true identity." Palaeontologists normally study the structure of fossils, but Mr Bobrovskiy extracted and analysed molecules from inside the Dickinsonia fossil found in ancient rocks in Russia to make the breakthrough discovery. "I took a helicopter to reach this very remote part of the world - home to bears and mosquitoes - where I could find Dickinsonia fossils with organic matter still intact," Mr Bobrovskiy said. "These fossils were located in the middle of cliffs of the White Sea that are 60 to 100 metres high. I had to hang over the edge of a cliff on ropes and dig out huge blocks of sandstone, throw them down, wash the sandstone and repeat this process until I found the fossils I was after." Associate Professor Brocks said being able to study molecules from these ancient organisms was a gamechanger. "When Ilya showed me the results, I just couldn't believe it," he said. "But I also immediately saw the significance." ANU led the research in collaboration with scientists from the Russian Academy of Science and the Max Planck Institute for Biogeochemistry and the University of Bremen in Germany.
Ancient amber reveals lacewing diversity during Mesozoic Washington (UPI) Sep 17, 2018 The discovery of more than two dozen amber fossils has offered scientists new insights into the lacewing populations that pollinated plants during the Mesozoic. Scientists know pollinators influenced the evolution of early angiosperms, or flowering plants. But evidence of early pollinator-plant relationships among pre-angiosperm plants is harder to come by. In a paper published this week in the journal Nature Communications, researchers from the Chinese Academy of Science described the d ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |