. 24/7 Space News .
PHYSICS NEWS
Fastest eclipsing binary, a valuable target for gravitational wave studies
by Staff Writers
Los Angeles CA (SPX) Jul 26, 2019

file illustration only

Observations made with a new instrument developed for use at the 2.1-meter (84-inch) telescope at the National Science Foundation's Kitt Peak National Observatory have led to the discovery of the fastest eclipsing white dwarf binary yet known.

Clocking in with an orbital period of only 6.91 minutes, the rapidly orbiting stars are expected to be one of the strongest sources of gravitational waves detectable with LISA, the future space-based gravitational wave detector.

The Dense "Afterlives" of Stars

After expanding into a red giant at the end of its life, a star like the Sun will eventually evolve into a dense white dwarf, an object with a mass like that of the Sun squashed down to a size comparable to Earth. Similarly, as binary stars evolve, they can engulf their companion in the red giant phase and spiral close together, eventually leaving behind a close white dwarf binary.

White dwarf binaries with very tight orbits are expected to be strong sources of gravitational wave radiation. Although anticipated to be relatively common, such systems have proven elusive, with only a few identified to date.

Record-setting White Dwarf Binary
A new survey of the night sky, currently underway at Palomar Observatory and Kitt Peak National Observatory, is changing this situation.

Each night, Caltech's Zwicky Transient Facility (ZTF), a survey that uses the 48-inch telescope at Palomar Observatory, scans the sky for objects that move, blink, or otherwise vary in brightness. Promising candidates are followed up with a new instrument, the Kitt Peak 84-inch Electron Multiplying Demonstrator (KPED), at the Kitt Peak 2.1-meter telescope to identify short period eclipsing binaries. KPED is designed to measure with speed and sensitivity the changing brightness of celestial sources.

This approach has led to the discovery of ZTF J1539+5027 (or J1539 for short), a white dwarf eclipsing binary with the shortest period known to date, a mere 6.91 minutes. The stars orbit so close together that the entire system could fit within the diameter of the planet Saturn.

"As the dimmer star passes in front of the brighter one, it blocks most of the light, resulting in the seven-minute blinking pattern we see in the ZTF data," explains Caltech graduate student Kevin Burdge, lead author of the paper reporting the discovery, which appears in the this week's issue of the journal Nature.

A Strong Source of Gravitational Waves
Closely orbiting white dwarfs are predicted to spiral together closer and faster, as the system loses energy by emitting gravitational waves. J1539's orbit is so tight that its orbital period is predicted to become measurably shorter after only a few years. Burdge's team was able to confirm the prediction from general relativity of a shrinking orbit, by comparing their new results with archival data acquired over the past ten years.

J1539 is a rare gem. It is one of only a few known sources of gravitational waves--ripples in space and time--that will be detected by the future European space mission LISA (Laser Interferometer Space Antenna), which is expected to launch in 2034.

LISA, in which NASA plays a role, will be similar to the National Science Foundation's ground-based LIGO (Laser Interferometer Gravitational-wave Observatory), which made history in 2015 by making the first direct detection of gravitational waves from a pair of colliding black holes. LISA will detect gravitational waves from space at lower frequencies. J1539 is well matched to LISA; the 4.8 mHz gravitational wave frequency of J1539 is close to the peak of LISA's sensitivity.

Discoveries Continue for Historic Telescope
Kitt Peak's 2.1-meter telescope, the second major telescope to be constructed at the site, has been in continuous operation since 1964. Its history includes many important discoveries in astrophysics, such as the Lyman-alpha forest in quasar spectra, the first gravitational lens by a galaxy, the first pulsating white dwarf, and the first comprehensive study of the binary frequency of stars like the Sun. The latest result continues its venerable track record.

Lori Allen, Director of Kitt Peak National Observatory and Acting Director of NOAO says, "We're thrilled to see that our 2.1-meter telescope, now more than 50 years old, remains a powerful platform for discovery."

"These wonderful observations are further proof that cutting-edge science can be done on modest-sized telescopes like the 2.1-meter in the modern era," adds Chris Davis, NSF Program Officer for NOAO.

More Thrills Ahead!
As remarkable as it is, J1539 was discovered with only a small portion of the data expected from ZTF. It was found in the ZTF team's initial analysis of 10 million sources, whereas the project will eventually study more than a billion stars.

"Only months after coming online, ZTF astronomers have detected white dwarfs orbiting each other at a record pace," says NSF Assistant Director for Mathematical and Physical Sciences, Anne Kinney. "It's a discovery that will greatly improve our understanding of these systems, and it's a taste of surprises yet to come."

Research Report: "General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system"


Related Links
Association of Universities for Research in Astronomy (AURA)
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Chameleon Theory Could Change How We Think About Gravity
Durham UK (SPX) Jul 09, 2019
Supercomputer simulations of galaxies have shown that Einstein's general theory of relativity might not be the only way to explain how gravity works or how galaxies form. Physicists at Durham University, UK, simulated the cosmos using an alternative model for gravity - f(R)-gravity, a so called Chameleon Theory. The resulting images produced by the simulation show that galaxies like our Milky Way could still form in the universe even with different laws of gravity. The findings show the viab ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Japan's space agency develops new filter to recycle urine

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

French inventor to hover across English Channel on 'flyboard'

US spacecraft's solar sail successfully deploys

PHYSICS NEWS
SpaceX Dragon on route to Space Station with cargo

Green Run test will pave the way for NASA lunar missions

3D printing transforms rocketry in Florida

SpaceX cargo launch to space station now targeting Wednesday

PHYSICS NEWS
Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

PHYSICS NEWS
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

PHYSICS NEWS
Communications satellite firm OneWeb plans to start monthly launches in December

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

PHYSICS NEWS
Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times

PHYSICS NEWS
Cold, dry planets could have a lot of hurricanes

ELSI scientists discover new chemistry that may help explain the origins of cellular life

New space discovery sheds light on how planets form

TESS mission completes first year of survey, turns to northern sky

PHYSICS NEWS
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.