. | . |
Fast-tracking the search for energy-efficient materials by Leda Zimmerman for MIT News Boston MA (SPX) Feb 02, 2022
Born into a family of architects, Nina Andrejevic loved creating drawings of her home and other buildings while a child in Serbia. She and her twin sister shared this passion, along with an appetite for math and science. Over time, these interests converged into a scholarly path that shares some attributes with the family profession, according to Andrejevic, a doctoral candidate in materials science and engineering at MIT. "Architecture is both a creative and technical field, where you try to optimize features you want for certain kinds of functionality, like the size of a building, or the layout of different rooms in a home," she says. Andrejevic's work in machine learning resembles that of architects, she believes: "We start from an empty site - a mathematical model that has random parameters - and our goal is to train this model, called a neural network, to have the functionality we desire." Andrejevic is a doctoral advisee of Mingda Li, an assistant professor in the Department of Nuclear Science and Engineering. As a research assistant in Li's Quantum Measurement Group, she is training her machine-learning models to hunt for new and useful traits in materials. Her work with the lab has landed in such major journals as Nature Communications, Advanced Science, Physical Review Letters, and Nano Letters. One area of special interest to her group is that of topological materials. "These materials are an exotic phase of matter that can transport electrons on the surface without energy loss," she says. "This makes them highly interesting for making more energy-efficient technologies." With her sister Jovana, a doctoral candidate in applied physics at Harvard University, Andrejevic has developed a method for testing material samples to predict the presence of topological characteristics that is faster and more versatile than other methods. If the ultimate goal is "producing better-performing, energy-saving technologies," she says, "we must first know which materials make good candidates for these applications, and that's something our research can help confirm."
Teaming up Andrejevic's dissertation work, which encompasses several projects, uses specialized spectroscopic techniques and data analysis, bolstered by machine learning, which can find patterns in vast amounts of data more efficiently than even the most high-throughput computers. "The unifying thread among all my projects is this idea of trying to accelerate or improve our understanding when applying these characterization tools, and to thereby obtain more useful information than we can with more traditional or approximate models," she says. The twins' research on topological materials serves as a case in point. In order to tease out novel and potentially useful properties of materials, researchers must interrogate them at the atomic and quantum scales. Neutron and photon spectroscopic techniques can help capture previously unidentified structures and dynamics, and determine how heat, electric or magnetic fields, and mechanical stress affect materials at the Lilliputian level. The laws governing this realm, where materials do not behave as they might at the macro-scale, are those of quantum mechanics. Current experimental approaches to identifying topological materials are challenging technically and inexact, potentially excluding viable candidates. The sisters believed they could avoid these pitfalls using a widely applied imaging technique, called X-ray absorption spectroscopy (XAS), and paired with a trained neural network. XAS sends focused X-ray beams into matter to help map its geometry and electron structure. The radiation data it provides offers a signature unique to the sampled material. "We wanted to develop a neural network that could identify topology from a material's XAS signature, a much more accessible measurement than that of other approaches," says Andrejevic. "This would hopefully allow us to screen a much broader category of potential topological materials." Over months, the researchers fed their neural network information from two databases: one contained materials theoretically predicted to be topological, and the other contained X-ray absorption data for a broad range of materials. "When properly trained, the model should serve as tool where it reads new XAS signatures it hasn't seen before, and tells if you if the material that produced the spectrum is topological," Andrejevic explains. The research duo's technique has demonstrated promising results, which they have already published in a preprint, "Machine learning spectral indicators of topology." "For me, the thrill with these machine-learning projects is seeing some underlying patterns and being able to understand those in terms of physical quantities," says Andrejevic.
Moving toward materials studies Machine learning, pivotal to Andrejevic's doctoral work, will be central to her life after MIT. When she graduates this winter, she heads straight for Argonne National Laboratory, where she has won a prestigious Maria Goeppert Mayer Fellowship, awarded "internationally to outstanding doctoral scientists and engineers who are at early points in promising careers." "We'll be trying to design physics-informed neural networks, with a focus on quantum materials," she says. This will mean saying goodbye to her sister, from whom she has never been separated for long. "It will be very different," says Andrejevic. But, she adds, "I do hope that Jovana and I will collaborate more in the future, no matter the distance!"
The impacts of impacts Thuwal, Saudi Arabia (SPX) Feb 02, 2022 When a solid object hits a liquid, the impact produces shock waves: a process that has long occupied engineers due to its implications for design of hydraulic systems or motors. KAUST researchers now show that impacts at speeds lower than expected can still induce these damaging shock waves. Also important for understanding shock waves is the process of cavitation. The pressure exerted by a gas on an evaporating liquid is known as the vapor pressure. If the liquid undergoes pressure less than the ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |