. | . |
Fake plastic atoms by Staff Writers Paris (ESA) Dec 19, 2018
Our world is made of atoms and molecules, but even with the most powerful microscopes we can only see snapshots, never how they move and interact with each other. To model how atoms behave, researchers have been using plastic particles in weightlessness and the latest batch of results are returning to Earth with ESA astronaut Alexander Gerst in a Soyuz spacecraft on Thursday. The Plasma Kristall experiments have been slow-cooking since 1998 using the same recipe: mix electrically charged gas in a sealed container with particles so small they would pass through a coffee filter. Perform the experiment in 'weightlessness' to keep the particles suspended. Apply electrical current in a plasma-filled tube to coax the particles to behave like atoms and form three-dimensional crystal structures. This 'recipe' comes from a European-Russian collaboration that started running experiments on parabolic flights, then ventured farther into space on sounding rockets followed by experiments on the Mir space station, which have been continued on the International Space Station since 2001. "Doing this research on Earth is not possible - Plasma Kristall models atomic interactions on a large scale, making their motion visible to us," explains Hubertus Thomas, lead scientist of this experiment at the German Aerospace Centre, DLR. Recently, a problem with the valve that regulates gas flow forced an 18-month pause in the experiment. A refurbished valve has allowed Plasma Kristall-4 (or PK-4) to resume operations.
Proxy atoms back to science "We are back up and running with the fifth campaign for PK-4 and we have already started exciting the particles with electrical fields, a laser and changes in temperature to get them to move in the plasma," says Hubertus. These manipulations cause the proxy atoms to interact strongly, leading to organised structures - plasma crystals. The plastic particles in PK-4 bond or repulse each other just as atoms do on Earth in fluid state. "By adjusting the voltage across the experiment chamber we can tailor their interactions, and observe each particle as if in slow motion," explains Hubertus. Using PK-4, researchers across the world can follow how an object melts, how waves spread in fluids and how currents change at the atomic level. The latest data returning to Earth with Alexander covers phase transitions, microscopic motions and shear forces. Shear forces are a hot topic in fundamental physics as they define air pressure along an aircraft wing for example.
The future of plasma Meanwhile a team of scientists has already made use of the knowhow gained from developing the experiment, to build plasma devices that disinfect wounds at room temperature. This revolution in healthcare has many practical applications, from food hygiene to treatment of skin diseases, water purification and even neutralising bad odours.
On the trail of the Higgs Boson Bologna, Italy (SPX) Dec 06, 2018 For the physics community, the discovery of new particles like the Higgs Boson has paved the way for a host of exciting potential experiments. Yet, when it comes to such an elusive particle as the Higgs Boson, it's not easy to unlock the secrets of the mechanism that led to its creation. The experiments designed to detect the Higgs Boson involve colliding particles with sufficiently high energy head-on after accelerating them in the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |