![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Sydney, Australia (SPX) Aug 02, 2016
Astronomers have managed to peer into the past of a nearby star millions of years before its famous explosion, using a telescope in remote outback Australia at a site free from FM radio interference. Research led by a student at the University of Sydney and including an international team of astronomers observing the region at the lowest-ever radio frequencies has helped fine-tune our understanding of stellar explosions. The research paints a picture of the star's life long before its death in what was the closest and brightest supernova seen from Earth, now known as supernova remnant 1987A, which collapsed spectacularly almost 30 years ago. Much had been known about the immediate past of this star through studying the cosmic ruins resulting from the star's collapse in 1987, which occurred in neighbouring galaxy, the Large Magellanic Cloud. However it was the detection of the very faintest of hisses through low-frequency radio astronomy that has provided the latest insights. Previously, only the final fraction of the dead star's multi-million-year-long life, about 0.1% or 20,000 years, had been observable. This latest research - which has enabled astrophysicists to probe the supernova's past life millions of years further back than was previously possible - was led by Joseph Callingham, a PhD candidate with the University of Sydney and the ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), under supervision from former Young Australian of the Year and former CAASTRO Director Bryan Gaensler, now at the University of Toronto. The findings are published in the Monthly Notices of the Royal Astronomical Society, Oxford University Press. Operating the Murchison Widefield Array in the West Australian desert, the radio astronomers were able to 'see' right back to when the star was in its long-lasting red supergiant phase. Mr. Callingham explained previous studies focused on material that was ejected into space when the star was in its final blue supergiant phase. "Just like excavating and studying ancient ruins that teach us about the life of a past civilisation, my colleagues and I have used low-frequency radio observations as a window into the star's life," Mr.. Callingham said. The star's secret past and deadly explosion are depicted in a video compiled by CAASTRO. Researchers found the red supergiant lost its matter at a slower rate and generated slower winds that pushed into its surrounding environment than was previously assumed. "Our new data improves our knowledge of the composition of space in the region of supernova 1987A; we can now go back to our simulations and tweak them, to better reconstruct the physics of supernova explosions," Mr. Callingham said. Professor Gaensler explained that key to gaining these new insights was the quiet environment in which the radio telescope is located. "Nobody knew what was happening at low radio frequencies, because the signals from our own earthbound FM radio drown out the faint signals from space. Now, by studying the strength of the radio signal, astronomers for the first time can calculate how dense the surrounding gas is, and thus understand the environment of the star before it died." Professor Gaensler said. Research paper: "Low Radio Frequency Observations and Spectral Modeling of the Remnant of Supernova 1987A," J. R. Callingham et al., 2016 Aug. 1, Monthly Notices of the Royal Astronomical Society
Related Links University Of Sydney Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |