. 24/7 Space News .
TIME AND SPACE
Eyeballing a black hole's mass
by Staff Writers
Moscow, Russia (SPX) Sep 27, 2019

File illustration only

There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence. They tested the new method, reported in the Monthly Notices of the Royal Astronomical Society, on the Messier 87 active galaxy.

Active galactic nuclei are among the brightest and most mysterious objects in space. A galaxy is deemed active if it produces a thin long beam of matter and energy directed outward. Known as a relativistic jet, this phenomenon cannot be accounted for by the stars in the galaxy. The current consensus is that the jets are produced by some kind of "motors," termed galactic nuclei. While their nature is poorly understood, researchers believe that a spinning black hole could power an active galaxy.

Messier 87 in the Virgo constellation is an active galaxy that is closest to Earth, and also the one best studied. It has been observed on a regular basis since 1781, when it was first discovered as a nebula. It took some time before astronomers realized that it was a galaxy, and its optical jet - discovered in 1918 - was the first one ever to be observed.

The structure of the Messier 87 jet has been meticulously studied, with its plasma jet velocities mapped and the temperature and particle number density near the jet measured. The jet's boundary has been studied in such fine detail that researchers discovered it was inhomogeneous along its length, changing its shape from parabolic to conical. Originally discovered as an isolated case, this effect was later confirmed for a dozen other galaxies, though M87 remains the clearest example of the phenomenon.

The sheer bulk of observations allow for testing hypotheses regarding the structure of active galaxies, including the relation between the jet shape break and the black hole's gravitational influence. Jet behavior and the existence of the supermassive black hole are two sides of the same coin: The former can be explained in terms of the latter while theoretical models of black holes are tested via jet observations.

Astrophysicists exploited the fact that the jet boundary is made up of segments of two distinct curves and used the distance between the core and the break of the jet, together with the jet's width, to indirectly measure the black hole mass and spin. To that end, MIPT scientists developed a method that combines a theoretical model, computer calculations, and telescope observations.

The researchers are trying to describe the jet as a flow of magnetized fluid. In this case, the shape of the jet is determined by the electromagnetic field in it, which in turn depends on various factors, such as the speed and charge of jet particles, the electric current within the jet, and the rate at which the black hole accretes matter. A complex interplay between these characteristics and physical phenomena gives rise to the observed break.

There is a theoretical model that predicts the break, so the team could determine which black hole mass results in the model reproducing the observed shape of the jet. This provided a new model for black hole mass estimation, a new measurement method, and a confirmation of the hypotheses underlying the theoretical model.

"The new independent method for estimation of black hole mass and spin is the key result of our work. Even though its accuracy is comparable to that of the existing methods, it has an advantage in that it brings us closer to the end goal. Namely, refining the parameters of the core 'motor' to deeper understand its nature," said Elena Nokhrina, the lead author of the paper and deputy head of the MIPT laboratory involved in the study.

Research paper


Related Links
Moscow Institute of Physics and Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Astronomers find star recently ripped apart by black hole
Washington (UPI) Sep 26, 2019
NASA's Transiting Exoplanet Survey Satellite has spotted the remnants of a star that was recently shredded by a supermassive black hole - a first. Astrophysicists and cosmologists estimate supermassive black holes are located at the center of most galaxies. When stars wander too close, a black hole's tremendous gravitational pull can rip it apart. The violent interaction is known as a tidal disruption event, or TDE. Scientists can come to better understand the dynamics of black holes by ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Stars in its eyes, UAE celebrates its first astronaut in space

Researcher explores better use of microbes for space travel

First Arab set for ISS says voyage will make 'history'

Top Five Technologies Needed for a Spacecraft to Survive Deep Space

TIME AND SPACE
After rollout, Soyuz rocket set to launch new crew to space station

Unmanned Japan craft launched toward space station: operator

Tunnel 9 personnel provide guidance for hypersonic experiment

Last Soyuz-FG Carrier Rocket installed at Baikonur

TIME AND SPACE
Far out: Bosnian village tickled to share name with Mars crater

Trump marks Mars as next target, Moon 'not so exciting'

Carbon Dioxide Conversion Challenge could help human explorers live on Mars

Marvellous Mars from the North Pole to the Southern Highlands

TIME AND SPACE
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

TIME AND SPACE
Australian Government commits to join NASA in Lunar exploration and beyond

First launch of UK's OneWeb satellites from Baikonur planned for Dec 19

Iridium and OneWeb to collaborate on a global satellite services offering

Winning bootcamp ideas at Phi-week

TIME AND SPACE
Celestia Technologies Group UK gears up for eScan expansion in the UK

MIT engineers develop 'blackest black' material to date

Mining industry seeks to polish tarnished reputation

Gem-like nanoparticles of precious metals shine as catalysts

TIME AND SPACE
When dwarf stars give birth to giant planets

A planet that should not exist

Researchers mix RNA and DNA to study how life's process began billions of years ago

Looking for alien lurkers

TIME AND SPACE
Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.