Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Eye-catching electronics
by Staff Writers
Zurich, Switzerland (SPX) Jan 16, 2014


The ultra-thin electronic membrane sticks to various surfaces. (Photo: Peter Ruegg / ETH Zurich).

Researchers at ETH are developing electronic components that are thinner and more flexible than before. They can even be wrapped around a single hair without damaging the electronics. This opens up new possibilities for ultra-thin, transparent sensors that are literally easy on the eye.

Niko Munzenrieder submerges a ficus leaf in water containing pieces of a shiny metallic membrane. Using tweezers, he carefully moves one of these pieces on to the leaf of the houseplant. On lifting the leaf, the film sticks to it like glue.

The post-doctoral researcher is demonstrating the special characteristics of this electronic component in the form of an ultra-thin membrane, which he has helped to develop. "These new thin-film transistors adhere to a wide range of surfaces and adapt perfectly," explains the physicist.

In Professor Gerhard Troster's Electronics Lab, scientists have been researching flexible electronic components, such as transistors and sensors, for some time now. The aim is to weave these types of components into textiles or apply them to the skin in order to make objects 'smart', or develop unobtrusive, comfortable sensors that can monitor various functions of the body.

Supple but functional
The researchers have now taken a big step towards this goal and their work has recently been published in the journal Nature Communications. With this new form of thin-film technology, they have created a very flexible and functional electronics.

Within a year, Munzenrieder, together with Giovanni Salvatore, has developed a procedure to fabricate these thin-film components. The membrane consists of the polymer parylene, which the researchers evaporate layer by layer into a conventional two-inch wafer. The parylene film has a maximum thickness of 0.001 mm, making it 50 times thinner than a human hair.

In subsequent steps, they used standardised methods to build transistors and sensors from semiconductor materials, such as indium gallium zinc oxide, and conductors, such as gold. The researchers then released the parylene film with its attached electronic components from the wafer.

An electronic component fabricated in this way is extremely flexible, adaptable and - depending on the material used for the transistors - transparent. The researchers confirmed the theoretically determined bending radius of 50 micrometers during experiments in which they placed the electronic membrane on human hair and found that the membrane wrapped itself around the hair with perfect conformability.

The transistors, which are less flexible than the substrate due to the ceramic materials used in their construction, still worked perfectly despite the strong bend.

Smart contact lens measures intraocular pressure
Munzenrieder and Salvatore see 'smart' contact lenses as a potential area of application for their flexible electronics. In the initial tests, the researchers attached the thin-film transistors, along with strain gauges, to standard contact lenses.

They placed these on an artificial eye and were able to examine whether the membrane, and particularly the electronics, could withstand the bending radius of the eye and continue to function. The tests showed, in fact, that this type of smart contact lens could be used to measure intraocular pressure, a key risk factor in the development of glaucoma.

However, the researchers must still overcome a few technical obstacles before a commercially viable solution can be considered. For instance, the way in which the electronics are attached to the contact lens has to be optimised to take into account the effects of the aqueous ocular environment.

In addition, sensors and transistors require energy, albeit only a small amount, which currently has to be provided from an external source. "In the lab, the film can be easily connected to the energy supply under a microscope. However, a different solution would need to be found for a unit attached to the actual eye," says Munzenrieder.

Professor Troster's laboratory has already attracted attention in the past with some unusual ideas for wearable electronics. For example, the researchers have developed textiles with electronic components woven into them and they have also used sensors to monitor the bodily functions of Swiss ski jumping star Simon Ammann during his jumps.

Salvatore GA, Munzenrieder N, Kinkeldei T, Petti L, Zysset C, Strebel I, Buthe L and Troster G. Wafer-scale design of lightweight and transparent eletronics that wraps around hairs. Nature Communications, published online 7th January 2014. doi: 10.1038/ncomms3982

.


Related Links
Eidgenossische Technische Hochschule Zurich
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Fastest organic transistor heralds new generation of see-through electronics
Stanford CA (SPX) Jan 16, 2014
Two university research teams have worked together to produce the world's fastest thin-film organic transistors, proving that this experimental technology has the potential to achieve the performance needed for high-resolution television screens and similar electronic devices. For years engineers the world over have been trying to use inexpensive, carbon-rich molecules and plastics to crea ... read more


CHIP TECH
China's moon rover performs first lunar probe

Internet Radio Provides Musical Space-Weather Reports from NASA's LRO Mission

Moon rover, lander wake after lunar night

India to launch second mission to moon by 2017

CHIP TECH
A Decade in the Dust

An Engineer With His Sights on Mars

Lichen on Mars

Megafloods: What They Leave Behind

CHIP TECH
Commercial Spaceflight Federation Applauds Passage of Bill Providing Funding for Commercial Programs

NASA Tests Orion Spacecraft Parachute Jettison over Arizona

NASA Space Launch System Could Make 'Outside the Box' Science Missions Possible

NASA Sets Coverage Schedule for TDRS-L/Atlas V Launch Events

CHIP TECH
Official: China's space policy open to world

China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

CHIP TECH
Cygnus Work Under Way, Normal Station Operations Continue

Spaceflight, Nanoracks Partnership Launch CubeSat Customers Towards Historic ISS Deployment

Orbital's cargo ship arrives at space station

Obama Administration Extends ISS Until at Least 2024

CHIP TECH
NASA's Commercial Crew Partners Aim to Capitalize, Expand on 2013 Successes in 2014

Ariane Flight VA217; Ariane Flight VA216 and Soyuz Flight VS07

2014 set to be a very productive year for collaboration between Arianespace and Italy

Vega Flight VV03 And Ariane Flight VA218

CHIP TECH
NASA's Kepler Provides Insights on Enigmatic Planets

Powerful Planet Finder Turns Its Eye to the Sky

New kind of planet or failed star? Astrophysicists discover category-defying celestial object

SF State astronomers discover new planet in Pisces constellation

CHIP TECH
ISS delays planned orbit raise due to space junk threat

IBM to invest $1.2 bn to expand 'cloud'

Space fishing: Japan to test 'magnetic net' for space junk

Boeing Space Surveillance System Reduces Risk of Satellite Loss by 66 Percent




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement