. | . |
Extracting high-quality magnesium sulphate from seawater desalination brine by Staff Writers Busan, South Korea (SPX) Nov 12, 2021
Given that mining to extract high-grade mineral ores is wastefully energy intensive, exhaustible, and bad for the environment, scientists have been scouting for alternatives. A group of Korean researchers, led by Professor Myoung-Jin Kim, from Korea Maritime and Ocean University, have now succeeded in extracting high-quality minerals from just seawater. Specifically, they have achieved the extraction of 99.8% pure magnesium sulphate (MgSO4), from seawater desalination brine (SDB). Speaking about the motivation behind the study, Prof. Kim exclaims, "Since we have already developed a sophisticated seawater desalination process to address the world's water needs, why not couple it with the beneficial process of mineral extraction! In this way, we believe that such extraction can be performed in an energy-efficient, sustainable, and environment-friendly manner." The team's findings have been published online, as a research article, on 15th December 2021, in Volume 518 of the journal Desalination. Further, the team has not only coupled the two processes, but has also developed a novel and subtle ethanol-based process to extract MgSO4. Initially, the researchers followed steps such as alkali-based magnesium hydroxide pre-precipitation from brine, and sulfuric acid-based magnesium concentration. Finally, they treated the magnesium eluate, twice, with ethanol-the first time, to remove calcium impurities, and the second time, to precipitate the high-purity MgSO4. Interestingly, this final two-step process used the difference in solubility between magnesium and calcium sulphates in ethanol, to achieve up to 67% magnesium recovery efficiency. Owing to the cost-effectiveness of mineral extraction from SDB, the researchers state that the obtained MgSO4 may not only be used for re-mineralizing desalinated fresh water, but also find potential applications in the pharmaceutical and food industry. Prof. Kim adds, "We hope that our study encourages further research on alternative mineral extraction processes." Indeed, humanity, with the aid of such science, can hope to reverse environmental damage, while sustainably meeting its needs for continued technological advancements.
Research Report: "Production of high-purity MgSO4 from seawater desalination brine"
Healable carbon fiber composite offers path to long-lasting, sustainable materials Seattle WA (SPX) Nov 08, 2021 Because of their high strength and light weight, carbon-fiber-based composite materials are gradually replacing metals for advancing all kinds of products and applications, from airplanes to wind turbines to golf clubs. But there's a trade-off. Once damaged or compromised, the most commonly-used carbon fiber materials are nearly impossible to repair or recycle. In a paper published Nov. 2 in the journal Carbon, a team of researchers describes a new type of carbon fiber reinforced material that is ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |