Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Experimental quest to test Einstein's speed limit
by Staff Writers
Berkeley CA (SPX) Jul 31, 2013


Left to right, Dmitry Budker, Nathan Leefer and Michael Hohensee with their experiment to test Einstein's speed limit. Photo by Andreas Gerhardus.

Albert Einstein's assertion that there's an ultimate speed limit - the speed of light - has withstood countless tests over the past 100 years, but that didn't stop University of California, Berkeley, postdoc Michael Hohensee and graduate student Nathan Leefer from checking whether some particles break this law.

The team's first attempt to test this fundamental tenet of the special theory of relativity demonstrated once again that Einstein was right, but Leefer and Hohensee are improving the experiment to push the theory's limits even farther - and perhaps turn up a discrepancy that could help physicists fix holes in today's main theories of the universe.

"As a physicist, I want to know how the world works, and right now our best models of how the world works - the Standard Model of particle physics and Einstein's theory of general relativity - don't fit together at high energies," said Hohensee of the Department of Physics. "By finding points of breakage in the models, we can start to improve these theories."

Hohensee, Leefer and Dmitry Budker, a UC Berkeley professor of physics, conducted the test using a new technique involving two isotopes of the element dysprosium. By measuring the energy required to change the velocity of electrons as they jumped from one atomic orbital to another while Earth rotated over a 12-hour period, they determined that the maximum speed of an electron - in theory, the speed of light, about 300 million meters per second - is the same in all directions to within 17 nanometers per second. Their measurements were 10 times more precise than previous attempts to measure the maximum speed of electrons.

Using the two isotopes of dysprosium as "clocks," they also showed that as the Earth moved closer to or farther from the sun over the course of two years, the relative frequency of these "clocks" remained constant, as Einstein predicted in his general theory of relativity. Their limits on anomalies in the physics of electrons that produce deviations from Einstein's gravitational redshift are 160 times better than previous experimental limits.

The UC Berkeley physicists and colleagues at the University of New South Wales in Sydney, Australia, who provided crucial theoretical calculations, published their results this week in the journal Physical Review Letters.

Hohensee noted that similar tests of Einstein's theories can be conducted in huge accelerators like the Large Hadron Collider (LHC) in Switzerland, but such experiments are expensive, the colliders take a long time to build and still don't reach energies high enough to where the theories could break down.

"You can try to probe these theories using big accelerators, but you would need to produce electrons with seven times the energy of the protons at the LHC. Or you can look at high energy phenomena in distant stars or black holes, but those are not in the lab and not fully understood," he said. "Instead, We can look for evidence that the standard model or general relativity break at low energy scales in small ways in a tabletop experiment."

Compared with existing tests, the revamped experiment by UC Berkeley physicists will potentially be a thousand times more sensitive, the level at which some theorists predict special relativity might break down.

"This technique will open the door to studying a whole other set of parameters that could be even more interesting and important," said Budker, who was among the first to use dysprosium's unusual electronic structure to test fundamental aspects of particle physics.

Budker and his team also report in a newly accepted paper in Physical Review Letters that they used the same experimental apparatus to show that a fundamental constant of nature, the fine structure constant, does not vary over time or in different gravitational fields.

Hohensee is part of a group led by UC Berkeley physics professor Holger Muller that focuses on precision measurements to test aspects of Einstein's theories, including gravitational redshift. The new results complement findings from one of Muller's 2010 experiments, which put the tightest limits yet on the gravitational redshift for matter waves.

"This experiment introduces a new technology using dysprosium to the field of testing Einstein. That is the major new trick. That makes it especially interesting to me," Muller said.

The work was supported by the Australian Research Council, National Science Foundation, Foundational Questions Institute and Miller Institute for Basic Research in Science at UC Berkeley.

.


Related Links
University of California - Berkeley
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Bizarre binary star system pushes study of relativity to new limits
Toronto, Canada (SPX) Apr 29, 2013
An international team of astronomers and an exotic pair of binary stars have proved that Albert Einstein's theory of relativity is still right, even in the most extreme conditions tested yet. The results of their research are described in the April 26 issue of Science. "The unusual pair of stars is quite interesting in its own right but we've learned it is also a unique laboratory for test ... read more


STELLAR CHEMISTRY
Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

First-ever lunar south pole mission could be attempted by 2016

STELLAR CHEMISTRY
Mars Rover Opportunity Nears Solander Point

Curiosity Mars Rover Gleams in View from Orbiter

Mars Curiosity sets one-day driving distance record

Scientists establish age of Mars meteorites found on Earth

STELLAR CHEMISTRY
First Liquid Hydrogen Tank Barrel Segment for SLS Core Completed

Tenth Parachute Test for NASA's Orion Adds 10,000 Feet of Success

Zero Point Frontiers Delivers Favorable Architecture Assessment to Golden Spike Company

NASA and Korean Space Agency Discuss Space Cooperation

STELLAR CHEMISTRY
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

STELLAR CHEMISTRY
NSBRI Wants Ideas To Support Space Crew Health and Performance

NASA narrows list of possible culprits in spacesuit water leak

Unmanned Russian cargo craft lands in Pacific Ocean

Russian supply ship docks with orbiting space station

STELLAR CHEMISTRY
SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

ULA Continues Rapid, Reliable Launch Rate

Launch Vehicles for Achieving Low and High Orbits

The second satellite arrives for Arianespace's upcoming heavy-lift Ariane 5 launch

STELLAR CHEMISTRY
Pulsating star sheds light on exoplanet

Chandra Sees Eclipsing Planet in X-rays for First Time

A warmer planetary haven around cool stars, as ice warms rather than cools

Solar system's youth gives clues to planet search

STELLAR CHEMISTRY
Laser communication system for spacecraft in successful test

Make It Yourself and Save - a Lot - with 3D Printers

Lifelike cooling for sunbaked windows

Sony, Panasonic mulling 300-gigabyte Blu-ray format




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement