24/7 Space News
PHYSICS NEWS
Enhanced gravitational wave detection accelerates neutron star and black hole research
illustration only
Enhanced gravitational wave detection accelerates neutron star and black hole research
by Clarence Oxford
Los Angeles CA (SPX) Apr 26, 2024

A recent collaboration led by the University of Minnesota Twin Cities College of Science and Engineering and an international team has developed new technology to improve gravitational wave detection. This advancement allows for sending alerts to astronomers and astrophysicists within 30 seconds of detection, significantly enhancing the study of neutron stars and black holes.

The researchers aim to deepen the understanding of how these celestial phenomena contribute to the formation of heavy elements like gold and uranium. Their findings were highlighted in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Gravitational waves, which interact with spacetime by compressing and stretching it, are detected by L-shaped laser interferometers that measure the interference patterns produced by two light sources. The precision required is equivalent to measuring the distance to the nearest star, approximately four light years away, to the width of a human hair.

The recent simulation campaign incorporated previous observational data with simulated gravitational wave signals to test software and equipment enhancements. The software is designed to identify signal shapes, monitor signal behavior, and estimate the masses involved in events such as neutron star or black hole collisions.

"With this software, we can detect the gravitational wave from neutron star collisions that is normally too faint to see unless we know exactly where to look," said Andrew Toivonen, a Ph.D. student at the University of Minnesota Twin Cities School of Physics and Astronomy. "Detecting the gravitational waves first will help locate the collision and help astronomers and astrophysicists to complete further research."

These rapid advancements are part of the fourth observing run of the Laser Interferometer Gravitational-Wave Observatory (LIGO), set to continue through February 2025. With each observing period, improvements are made to enhance signal detection and alert speed. The collaboration involves over 1,200 scientists and about 100 institutions worldwide, coordinated through the LIGO Scientific Collaboration.

Research Report:Low-latency gravitational wave alert products and their performance at the time of the fourth LIGO-Virgo-KAGRA observing run

Related Links
University of Minnesota
The Physics of Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
PHYSICS NEWS
New gravitational-wave detection challenges astrophysical mass gap theories
London, UK (SPX) Apr 08, 2024
In a significant advancement in astrophysics, the University of Portsmouth's Institute of Cosmology and Gravitation (ICG) has played a crucial role in detecting an extraordinary gravitational-wave signal. This finding is part of the latest results released by the LIGO-Virgo-KAGRA collaboration, which involves over 1,600 scientists globally. The intriguing signal, identified as GW230529, was captured in May 2023 by the LIGO Livingston detector in Louisiana, USA. It originates from a possible collis ... read more

PHYSICS NEWS
Refining space mission interoperability: NASA unveils new trajectory sharing strategy

NASA and Industry Partners Enhance Space Station Missions with Crew and Cargo Deliveries

NASA Doubles Down, Advances 6 Innovative Tech Concepts to New Phase

NASA's Solar Sail Mission Successfully Phones Home

PHYSICS NEWS
SpaceX completes bicoastal launches, adding to Starlink's megaconstellation

Sidus Space fulfills order and supplies key components for NASA's Mobile Launcher 2

Radioisotope thermoradiative cells: advancing power generation for outer planet missions

Pulsed plasma rocket development accelerates manned missions to Mars

PHYSICS NEWS
Mars agriculture simulations show promise and challenges

Manganese discovery on Mars suggests ancient Earth-like conditions

NASA launches commercial studies to facilitate Mars robotic science

NASA Scientists Gear Up for Solar Storms at Mars

PHYSICS NEWS
Shenzhou XVII astronauts safely back from Tiangong space station

International Support for China's Chang'e-6 Lunar Mission

Shenzhou XVIII crew takes command at Tiangong space station

Shenzhou XVIII astronauts enter space station

PHYSICS NEWS
ESA launches space innovation hub in Austria

Satellite Deployment and Orbital Risks Increase Amid Growing Space Congestion

European satellite giant SES to buy US rival Intelsat

Hughes launches new manufacturing hub and private 5G center in Maryland

PHYSICS NEWS
Astroscale Japan Advances to Next Stage in JAXA's Orbital Debris Removal Initiative

Microsoft announces Thai datacenter region, AI training

EarthCARE satellite set for launch

Umbra progresses to next phase in DARPA radar tech program

PHYSICS NEWS
Webb telescope's study suggests life on exoplanet remains unconfirmed

LLNL Pandora SmallSat mission clears major NASA milestone on the path toward launch

Nightside clouds reveal new insights on giant exoplanet Wasp-43b

Genomes of multicellular algal relatives reveal evolutionary clues to plant origins

PHYSICS NEWS
Webb telescope details weather patterns on distant exoplanet

Juno mission reveals volcanic landscapes on Io

Probing liquid water beyond Earth with advanced radar technology

Dating the Solar System's orbital changes with enstatite meteorites

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.