. | . |
Engineers harvest heart's energy to power life-saving devices by Staff Writers Hanover NH (SPX) Feb 05, 2019
The heart's motion is so powerful that it can recharge devices that save our lives, according to new research from Dartmouth College. Using a dime-sized invention developed by engineers at the Thayer School of Engineering at Dartmouth, the kinetic energy of the heart can be converted into electricity to power a wide-range of implantable devices, according to the study funded by the National Institutes of Health. Millions of people rely on pacemakers, defibrillators and other live-saving implantable devices powered by batteries that need to be replaced every five to 10 years. Those replacements require surgery which can be costly and create the possibility of complications and infections. "We're trying to solve the ultimate problem for any implantable biomedical device," says Dartmouth engineering professor John X.J. Zhang, a lead researcher on the study his team completed alongside clinicians at the University of Texas in San Antonio. "How do you create an effective energy source so the device will do its job during the entire life span of the patient, without the need for surgery to replace the battery?" "Of equal importance is that the device not interfere with the body's function," adds Dartmouth research associate Lin Dong, first author on the paper. "We knew it had to be biocompatible, lightweight, flexible, and low profile, so it not only fits into the current pacemaker structure but is also scalable for future multi-functionality." The team's work proposes modifying pacemakers to harness the kinetic energy of the lead wire that's attached to the heart, converting it into electricity to continually charge the batteries. The added material is a type of thin polymer piezoelectric film called "PVDF" and, when designed with porous structures - either an array of small buckle beams or a flexible cantilever - it can convert even small mechanical motion to electricity. An added benefit: the same modules could potentially be used as sensors to enable data collection for real-time monitoring of patients. The results of the three-year study, completed by Dartmouth's engineering researchers along with clinicians at UT Health San Antonio, were just published in the cover story for Advanced Materials Technologies. The two remaining years of NIH funding plus time to finish the pre-clinical process and obtain regulatory approval puts a self-charging pacemaker approximately five years out from commercialization, according to Zhang. "We've completed the first round of animal studies with great results which will be published soon," says Zhang. "There is already a lot of expressed interest from the major medical technology companies, and Andrew Closson, one of the study's authors working with Lin Dong and an engineering PhD Innovation Program student at Dartmouth, is learning the business and technology transfer skills to be a cohort in moving forward with the entrepreneurial phase of this effort."
Simply shining light on dinosaur metal compound kills cancer cells Warwick UK (SPX) Feb 05, 2019 A new compound based on Iridium, a rare metal which landed in the Gulf of Mexico 66 M years ago, hooked onto albumin, a protein in blood, can attack the nucleus of cancerous cells when switched on by light, University of Warwick researchers have found. The treatment of cancer using light, called Photodynamic therapy, is based on chemical compounds called photosensitizers, which can be switched on by light to produce oxidising species, able to kill cancer cells. Clinicians can activate these compou ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |